scholarly journals Genome-wide association analysis of lifetime cannabis use (N=184,765) identifies new risk loci, genetic overlap with mental health, and a causal influence of schizophrenia on cannabis use

2018 ◽  
Author(s):  
Joëlle A. Pasman ◽  
Karin J.H. Verweij ◽  
Zachary Gerring ◽  
Sven Stringer ◽  
Sandra Sanchez-Roige ◽  
...  

Cannabis use is a heritable trait [1] that has been associated with adverse mental health outcomes. To identify risk variants and improve our knowledge of the genetic etiology of cannabis use, we performed the largest genome-wide association study (GWAS) meta-analysis for lifetime cannabis use (N=184,765) to date. We identified 4 independent loci containing genome-wide significant SNP associations. Gene-based tests revealed 29 genome-wide significant genes located in these 4 loci and 8 additional regions. All SNPs combined explained 10% of the variance in lifetime cannabis use. The most significantly associated gene, CADM2, has previously been associated with substance use and risk-taking phenotypes [2–4]. We used S-PrediXcan to explore gene expression levels and found 11 unique eGenes. LD-score regression uncovered genetic correlations with smoking, alcohol use and mental health outcomes, including schizophrenia and bipolar disorder. Mendelian randomisation analysis provided evidence for a causal positive influence of schizophrenia risk on lifetime cannabis use.

2019 ◽  
Author(s):  
Sonia Shah ◽  
Albert Henry ◽  
Carolina Roselli ◽  
Honghuang Lin ◽  
Garðar Sveinbjörnsson ◽  
...  

AbstractHeart failure (HF) is a leading cause of morbidity and mortality worldwide1. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained2–4. We report the largest GWAS meta-analysis of HF to-date, comprising 47,309 cases and 930,014 controls. We identify 12 independent variant associations with HF at 11 genomic loci, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function suggesting shared genetic aetiology. Expression quantitative trait analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homeostasis (BAG3), and cellular senescence (CDKN1A). Using Mendelian randomisation analysis we provide new evidence supporting previously equivocal causal roles for several HF risk factors identified in observational studies, and demonstrate CAD-independent effects for atrial fibrillation, body mass index, hypertension and triglycerides. These findings extend our knowledge of the genes and pathways underlying HF and may inform the development of new therapeutic approaches.


2018 ◽  
Author(s):  
Iris E Jansen ◽  
Jeanne E Savage ◽  
Kyoko Watanabe ◽  
Julien Bryois ◽  
Dylan M Williams ◽  
...  

AbstractLate onset Alzheimer’s disease (AD) is the most common form of dementia with more than 35 million people affected worldwide, and no curative treatment available. AD is highly heritable and recent genome-wide meta-analyses have identified over 20 genomic loci associated with AD, yet only explaining a small proportion of the genetic variance indicating that undiscovered loci exist. Here, we performed the largest genome-wide association study of clinically diagnosed AD and AD-by-proxy (71,880 AD cases, 383,378 controls). AD-by-proxy status is based on parental AD diagnosis, and showed strong genetic correlation with AD (rg=0.81). Genetic meta analysis identified 29 risk loci, of which 9 are novel, and implicating 215 potential causative genes. Independent replication further supports these novel loci in AD. Associated genes are strongly expressed in immune-related tissues and cell types (spleen, liver and microglia). Furthermore, gene-set analyses indicate the genetic contribution of biological mechanisms involved in lipid-related processes and degradation of amyloid precursor proteins. We show strong genetic correlations with multiple health-related outcomes, and Mendelian randomisation results suggest a protective effect of cognitive ability on AD risk. These results are a step forward in identifying more of the genetic factors that contribute to AD risk and add novel insights into the neurobiology of AD to guide new drug development.


2020 ◽  
Vol 7 (12) ◽  
pp. 1032-1045 ◽  
Author(s):  
Emma C Johnson ◽  
Ditte Demontis ◽  
Thorgeir E Thorgeirsson ◽  
Raymond K Walters ◽  
Renato Polimanti ◽  
...  

2018 ◽  
Author(s):  
Caroline M. Nievergelt ◽  
Adam X. Maihofer ◽  
Torsten Klengel ◽  
Elizabeth G. Atkinson ◽  
Chia-Yen Chen ◽  
...  

AbstractPost-traumatic stress disorder (PTSD) is a common and debilitating disorder. The risk of PTSD following trauma is heritable, but robust common variants have yet to be identified by genome-wide association studies (GWAS). We have collected a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls. We first demonstrate significant genetic correlations across 60 PTSD cohorts to evaluate the comparability of these phenotypically heterogeneous studies. In this largest GWAS meta-analysis of PTSD to date we identify a total of 6 genome-wide significant loci, 4 in European and 2 in African-ancestry analyses. Follow-up analyses incorporated local ancestry and sex-specific effects, and functional studies. Along with other novel genes, a non-coding RNA (ncRNA) and a Parkinson’s Disease gene,PARK2, were associated with PTSD. Consistent with previous reports, SNP-based heritability estimates for PTSD range between 10-20%. Despite a significant shared liability between PTSD and major depressive disorder, we show evidence that some of our loci may be specific to PTSD. These results demonstrate the role of genetic variation contributing to the biology of differential risk for PTSD and the necessity of expanding GWAS beyond European ancestry.


2017 ◽  
Author(s):  
Yann C. Klimentidis ◽  
David A. Raichlen ◽  
Jennifer Bea ◽  
David O. Garcia ◽  
Lawrence J. Mandarino ◽  
...  

AbstractBackground/ObjectivesPhysical activity (PA) protects against a wide range of diseases. Engagement in habitual PA has been shown to be heritable, motivating the search for specific genetic variants that may ultimately inform efforts to promote PA and target the best type of PA for each individual.Subjects/MethodsWe used data from the UK Biobank to perform the largest genome-wide association study of PA to date, using three measures based on self-report (n=277,656) and two measures based on wrist-worn accelerometry data (n=67,808). We examined genetic correlations of PA with other traits and diseases, as well as tissue-specific gene expression patterns. With data from the Atherosclerosis Risk in Communities (ARIC; n=8,556) study, we performed a meta-analysis of our top hits for moderate-to-vigorous PA (MVPA).ResultsWe identified 26 genome-wide loci across the five PA measures examined. Upon meta-analysis of the top hits for MVPA with results from the ARIC study, 8 of 10 remained significant at p<5×10−8. Interestingly, among these, the rs429358 variant in theAPOEgene was the most strongly associated with MVPA. Variants inCADM2, a gene recently implicated in risk-taking behavior and other personality and cognitive traits, were found to be associated with regular engagement in strenuous sports or other exercises. We also identified thirteen loci consistently associated (p<0.005) with each of the five PA measures. We find genetic correlations of PA with educational attainment traits, chronotype, psychiatric traits, and obesity-related traits. Tissue enrichment analyses implicate the brain and pituitary gland as locations where PA-associated loci may exert their actions.ConclusionsThese results provide new insight into the genetic basis of habitual PA, and the genetic links connecting PA with other traits and diseases.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Sara Coles ◽  
Stephanie Giamberardino ◽  
Carol Haynes ◽  
Ruicong She ◽  
Hongsheng Gui ◽  
...  

Background: Exercise has shown benefit in patients with systolic heart failure, including in the clinical trial Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training (HF-ACTION). There is heterogeneity in who derives benefit from exercise, and the biologic mechanisms of favorable response to exercise in systolic heart failure are not well understood. Hypothesis: Genetic variation is an underlying factor influencing heterogeneity in response to exercise in patients with systolic heart failure. Methods: The HF-ACTION trial randomized individuals with systolic heart failure (left ventricular ejection fraction <35%) to supervised exercise versus usual care. In this study, we performed a genome wide association study (GWAS) in the HF-ACTION biorepository using the Axiom Biobank1 genotyping array (13,403,591 single nucleotide polymorphisms [SNPs] after quality control on directly genotyped and 1000 genomes imputed data), in N=377 study subjects who completed the supervised exercise arm. Using change in peak VO2 as our outcome, we ran within-ancestry GWASes, modeling SNP effects as both additive and dominant, and conducted across-ancestry meta-analysis within each genetic model. Results: Five loci met genome-wide significance in the European ancestry analyses, 5 loci in the African ancestry, and 8 in the meta-analyses. The two most significantly associated loci across both additive and dominant meta-analysis models were rs111577308 located in the histone acetylation for transcription elongator complex 3 gene ( ELP3, p=1.212x10 -9 ) and rs75444785 located in the phosphodiesterase 4D gene ( PDE4D , p=1.565x10 -9 ). ELP3 is responsible for histone modifications related to DNA transcription factor complexes, and PDE4D is involved in cyclic AMP cell signaling. In silico analysis of these loci showed that they are in linkage with regions associated with skeletal muscle and peripheral vascular disease phenotypes. Conclusions: Using a genome-wide association study in a well-phenotyped clinical trial of exercise in systolic heart failure, we found common genetic variants in genes involved in DNA transcription histone modification and cyclic AMP cell signaling that are associated with a more favorable response to exercise.


Sign in / Sign up

Export Citation Format

Share Document