scholarly journals Sequence determinants of protein phase behavior from a coarse-grained model

2017 ◽  
Author(s):  
Gregory L. Dignon ◽  
Wenwei Zheng ◽  
Young C. Kim ◽  
Robert B. Best ◽  
Jeetain Mittal

AbstractMembraneless organelles important to intracellular compartmentalization have recently been shown to comprise assemblies of proteins which undergo liquid-liquid phase separation (LLPS). However, many proteins involved in this phase separation are at least partially disordered. The molecular mechanism and the sequence determinants of this process are challenging to determine experimentally owing to the disordered nature of the assemblies, motivating the use of theoretical and simulation methods. This work advances a computational framework for conducting simulations of LLPS with residue-level detail, and allows for the determination of phase diagrams and coexistence densities of proteins in the two phases. The model includes a short-range contact potential as well as a simplified treatment of electrostatic energy. Interaction parameters are optimized against experimentally determined radius of gyration data for multiple unfolded or intrinsically disordered proteins (IDPs). These models are applied to two systems which undergo LLPS: the low complexity domain of the RNA-binding protein FUS and the DEAD-box helicase protein LAF-1. We develop a novel simulation method to determine thermodynamic phase diagrams as a function of the total protein concentration and temperature. We show that the model is capable of capturing qualitative changes in the phase diagram due to phosphomimetic mutations of FUS and to the presence or absence of the large folded domain in LAF-1. We also explore the effects of chain-length, or multivalency, on the phase diagram, and obtain results consistent with Flory-Huggins theory for polymers. Most importantly, the methodology presented here is flexible so that it can be easily extended to other pair potentials, be used with other enhanced sampling methods, and may incorporate additional features for biological systems of interest.Author summaryLiquid liquid phase separation (LLPS) of low-complexity protein sequences has emerged as an important research topic due to its relevance to membraneless organelles and intracellular compartmentalization. However a molecular level understanding of LLPS cannot be easily obtained by experimental methods due to difficulty of determining structural properties of phase separated protein assemblies, and of choosing appropriate mutations. Here we advance a coarse-grained computational framework for accessing the long time scale phase separation process and for obtaining molecular details of LLPS, in conjunction with state of the art enhanced sampling methods. We are able to capture qualitatively the changes of phase diagram due to specific mutations, inclusion of a folded domain, and to variation of chain length. The model is flexible and can be used with different knowledge-based potential energy functions, as we demonstrate. We expect a wide application of the presented framework for advancing our understanding of the formation of liquid-like protein assemblies.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 548
Author(s):  
Donya Pakravan ◽  
Emiel Michiels ◽  
Anna Bratek-Skicki ◽  
Mathias De Decker ◽  
Joris Van Lindt ◽  
...  

Aggregates of TAR DNA-binding protein (TDP-43) are a hallmark of several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Although TDP-43 aggregates are an undisputed pathological species at the end stage of these diseases, the molecular changes underlying the initiation of aggregation are not fully understood. The aim of this study was to investigate how phase separation affects self-aggregation and aggregation seeded by pre-formed aggregates of either the low-complexity domain (LCD) or its short aggregation-promoting regions (APRs). By systematically varying the physicochemical conditions, we observed that liquid–liquid phase separation (LLPS) promotes spontaneous aggregation. However, we noticed less efficient seeded aggregation in phase separating conditions. By analyzing a broad range of conditions using the Hofmeister series of buffers, we confirmed that stabilizing hydrophobic interactions prevail over destabilizing electrostatic forces. RNA affected the cooperativity between LLPS and aggregation in a “reentrant” fashion, having the strongest positive effect at intermediate concentrations. Altogether, we conclude that conditions which favor LLPS enhance the subsequent aggregation of the TDP-43 LCD with complex dependence, but also negatively affect seeding kinetics.



2017 ◽  
Vol 112 (3) ◽  
pp. 200a
Author(s):  
Gregory L. Dignon ◽  
Wenwei Zheng ◽  
Robert Best ◽  
Jeetain Mittal




1985 ◽  
Vol 40 (7) ◽  
pp. 693-698 ◽  
Author(s):  
M. Woznyj ◽  
H.-D. Lüdemann

The phase diagram t-butanol/water is studied in the temperature range between 200 and 450 K at pressures up to 200 MPa. No liquid/liquid phase separation is observed in this range. The solid/liquid phase diagram reveals the presence of a stable t-butanol/dihydrate at all pressures. At the t-butanol rich side of the diagram solid mixtures with compositions t-butanol/water ~ 5 :1 and ~ 6 : 1 are observed.



2019 ◽  
Vol 5 (8) ◽  
pp. eaax3155 ◽  
Author(s):  
Mengkui Cui ◽  
Xinyu Wang ◽  
Bolin An ◽  
Chen Zhang ◽  
Xinrui Gui ◽  
...  

Many biological materials form via liquid-liquid phase separation (LLPS), followed by maturation into a solid-like state. Here, using a biologically inspired assembly mechanism designed to recapitulate these sequential assemblies, we develop ultrastrong underwater adhesives made from engineered proteins containing mammalian low-complexity (LC) domains. We show that LC domain–mediated LLPS and maturation substantially promotes the wetting, adsorption, priming, and formation of dense, uniform amyloid nanofiber coatings on diverse surfaces (e.g., Teflon), and even penetrating difficult-to-access locations such as the interiors of microfluidic devices. Notably, these coatings can be deposited on substrates over a broad range of pH values (3 to 11) and salt concentrations (up to 1 M NaCl) and exhibit strong underwater adhesion performance. Beyond demonstrating the utility of mammalian LC domains for driving LLPS in soft materials applications, our study illustrates a powerful example of how combining LLPS with subsequent maturation steps can be harnessed for engineering protein-based materials.



Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4705
Author(s):  
Adiran Garaizar ◽  
Ignacio Sanchez-Burgos ◽  
Rosana Collepardo-Guevara ◽  
Jorge R. Espinosa

Proteins containing intrinsically disordered regions (IDRs) are ubiquitous within biomolecular condensates, which are liquid-like compartments within cells formed through liquid–liquid phase separation (LLPS). The sequence of amino acids of a protein encodes its phase behaviour, not only by establishing the patterning and chemical nature (e.g., hydrophobic, polar, charged) of the various binding sites that facilitate multivalent interactions, but also by dictating the protein conformational dynamics. Besides behaving as random coils, IDRs can exhibit a wide-range of structural behaviours, including conformational switching, where they transition between alternate conformational ensembles. Using Molecular Dynamics simulations of a minimal coarse-grained model for IDRs, we show that the role of protein conformation has a non-trivial effect in the liquid–liquid phase behaviour of IDRs. When an IDR transitions to a conformational ensemble enriched in disordered extended states, LLPS is enhanced. In contrast, IDRs that switch to ensembles that preferentially sample more compact and structured states show inhibited LLPS. This occurs because extended and disordered protein conformations facilitate LLPS-stabilising multivalent protein–protein interactions by reducing steric hindrance; thereby, such conformations maximize the molecular connectivity of the condensed liquid network. Extended protein configurations promote phase separation regardless of whether LLPS is driven by homotypic and/or heterotypic protein–protein interactions. This study sheds light on the link between the dynamic conformational plasticity of IDRs and their liquid–liquid phase behaviour.



2020 ◽  
Author(s):  
Simon M. Lichtinger ◽  
Adiran Garaizar ◽  
Rosana Collepardo-Guevara ◽  
Aleks Reinhardt

AbstractRationally and efficiently modifying the amino-acid sequence of proteins to control their ability to undergo liquid-liquid phase separation (LLPS) on demand is not only highly desirable, but can also help to elucidate which protein features are important for LLPS. Here, we propose an innovative computational method that couples a genetic algorithm to a sequence-dependent coarse-grained protein model to evolve the amino-acid sequences of phase-separating intrinsically disordered protein regions (IDRs), and purposely enhance or inhibit their capacity to phase-separate. We apply it to the phase-separating IDRs of three naturally occurring proteins, namely FUS, hnRNPA1 and LAF1, as prototypes of regions that exist in cells and undergo homotypic LLPS driven by different types of intermolecular interaction. We find that the evolution of amino-acid sequences towards enhanced LLPS is driven in these three cases, among other factors, by an increase in the average size of the amino acids. However, the direction of change in the molecular driving forces that enhance LLPS (such as hydrophobicity, aromaticity and charge) depends on the initial amino-acid sequence: the critical temperature can be enhanced by increasing the frequency of hydrophobic and aromatic residues, by changing the charge patterning, or by a combination of both. Finally, we show that the evolution of amino-acid sequences to modulate LLPS is strongly coupled to the composition of the medium (e.g. the presence or absence of RNA), which may have significant implications for our understanding of phase separation within the many-component mixtures of biological systems.



2020 ◽  
Author(s):  
Bercem Dutagaci ◽  
Grzegorz Nawrocki ◽  
Joyce Goodluck ◽  
Ali Akbar Ashkarran ◽  
Charles G. Hoogstraten ◽  
...  

ABSTRACTPhase separation processes are increasingly being recognized as important organizing mechanisms of biological macromolecules in cellular environments. Well established drivers of liquid-liquid phase separation are multi-valency and intrinsic disorder. Here, we show that globular macromolecules may condense simply based on electrostatic complementarity. More specifically, phase separation of mixtures between RNA and positively charged proteins is described from a combination of multiscale computer simulations with microscopy and spectroscopy experiments. Condensates retain liquid character and phase diagrams are mapped out as a function of molecular concentrations in experiment and as a function of molecular size and temperature via simulations. The results suggest a more general principle for phase separation that is based primarily on electrostatic complementarity without invoking polymer properties as in most previous studies. Simulation results furthermore suggest that such phase separation may occur widely in heterogenous cellular environment between nucleic acid and protein components.STATEMENT OF SIGNIFICANCELiquid-liquid phase separation has been recognized as a key mechanism for forming membrane-less organelles in cells. Commonly discussed mechanisms invoke a role of disordered peptides and specific multi-valent interactions. We report here phase separation of RNA and proteins based on a more universal principle of charge complementarity that does not require disorder or specific interactions. The findings are supported by coarse-grained simulations, theory, and experimental validation via microscopy and spectroscopy. The broad implication of this work is that condensate formation may be a universal phenomenon in biological systems.



2021 ◽  
Author(s):  
Josep Rizo ◽  
Carlos M. Roggero ◽  
Victoria Esser ◽  
Lingling Duan ◽  
Allyson M. Rice ◽  
...  

The androgen receptor (AR) plays a central role in prostate cancer. Development of castration resistant prostate cancer (CRPC) requires androgen-independent activation of AR, which involves its large N-terminal domain (NTD) and entails dramatic epigenetic changes depending in part on histone lysine demethylases (KDMs) that interact with AR. The AR-NTD is rich in low-complexity sequences, including a polyQ repeat. Longer polyQ sequences were reported to decrease transcriptional activity and to protect against prostate cancer. However, the molecular mechanisms underlying these observations are unclear. Using NMR spectroscopy, here we identify weak interactions between the AR-NTD and the KDM4A catalytic domain, and between the AR ligand-binding domain and a central KDM4A region that also contains low-complexity sequences. We also show that the AR-NTD can undergo liquid-liquid phase separation in vitro, with longer polyQ sequences phase separating more readily. Moreover, longer polyQ sequences hinder nuclear localization in the absence of hormone and increase the propensity for formation of AR-containing puncta in the nucleus of cells treated with dihydrotestosterone. These results lead us to hypothesize that polyQ-dependent liquid-liquid phase separation may provide a mechanism to decrease the transcriptional activity of AR, potentially opening new opportunities to design effective therapies against CRPC.



Author(s):  
T. M. Perdikari ◽  
N. Jovic ◽  
G. L. Dignon ◽  
Y. C. Kim ◽  
N. L. Fawzi ◽  
...  

AbstractBiomolecules undergo liquid-liquid phase separation (LLPS) resulting in the formation of multicomponent protein-RNA membraneless organelles in cells. However, the physiological and pathological role of post translational modifications (PTMs) on the biophysics of phase behavior is only beginning to be probed. To study the effect of PTMs on LLPS in silico, we extend our transferable coarse-grained model of intrinsically disordered proteins to include phosphorylated and acetylated amino acids. Using the parameters for modified amino acids available for fixed charge atomistic forcefields, we parameterize the size and atomistic hydropathy of the coarse-grained modified amino acid beads, and hence the interactions between the modified and natural amino acids. We then elucidate how the number and position of phosphorylated and acetylated residues alter the protein’s single chain compactness and its propensity to phase separate. We show that both the number and the position of phosphorylated threonines/serines or acetylated lysines can serve as a molecular on/off switch for phase separation in the well-studied disordered regions of FUS and DDX3X, respectively. We also compare modified residues to their commonly used PTM mimics for their impact on chain properties. Importantly, we show that the model can predict and capture experimentally measured differences in the phase behavior for position-specific modifications, showing that the position of modifications can dictate phase separation. In sum, this model will be useful for studying LLPS of post-translationally modified intrinsically disordered proteins and predicting how modifications control phase behavior with position-specific resolution.Statement of SignificancePost-translational modifications are important regulators of liquid-liquid phase separation (LLPS) which drives the formation of biomolecular condensates. Theoretical methods can be used to characterize the biophysical properties of intrinsically disordered proteins (IDPs). Our recent framework for molecular simulations using a Cα-centered coarse-grained model can predict the effect of various perturbations such as mutations (Dignon et al. PloS Comput. Biol, 2018) and temperature (Dignon et al, ACS Cent. Sci., 2019) on LLPS. Here, we expand this framework to incorporate modified residues like phosphothreonine, phosphoserine and acetylysine. This model will prove useful for simulating the phase separation of post-translationally modified IDPs and predicting how position-specific modifications can control phase behavior across the large family of proteins known to be phosphorylated and acetylated.



Sign in / Sign up

Export Citation Format

Share Document