scholarly journals PhytoNet: Comparative co-expression network analyses across phytoplankton and land plants

2018 ◽  
Author(s):  
Camilla Ferrari ◽  
Sebastian Proost ◽  
Colin Ruprecht ◽  
Marek Mutwil

ABSTRACTPhytoplankton consists of autotrophic, photosynthesizing microorganisms that are a crucial component of freshwater and ocean ecosystems. However, despite being the major primary producers of organic compounds, accounting for half of the photosynthetic activity worldwide and serving as the entry point to the food chain, functions of most of the genes of the model phytoplankton organisms remain unknown. To remedy this, we have gathered publicly available expression data for one chlorophyte, one rhodophyte, one haptophyte, two heterokonts and four cyanobacteria and integrated it into our PlaNet (Plant Networks) database, which now allows mining gene expression profiles and identification of co-expressed genes of 19 species. We exemplify how the co-expressed gene networks can be used to reveal functionally related genes and how the comparative features of PhytoNet allow detection of conserved transcriptional programs between cyanobacteria, green algae, and land plants. Additionally, we illustrate how the database allows detection of duplicated transcriptional programs within an organism, as exemplified by two DNA repair programs within Chlamydomonas reinhardtii. PhytoNet is available from www.gene2function.de.

Author(s):  
Crescenzio Gallo

The possible applications of modeling and simulation in the field of bioinformatics are very extensive, ranging from understanding basic metabolic paths to exploring genetic variability. Experimental results carried out with DNA microarrays allow researchers to measure expression levels for thousands of genes simultaneously, across different conditions and over time. A key step in the analysis of gene expression data is the detection of groups of genes that manifest similar expression patterns. In this chapter, the authors examine various methods for analyzing gene expression data, addressing the important topics of (1) selecting the most differentially expressed genes, (2) grouping them by means of their relationships, and (3) classifying samples based on gene expressions.


Author(s):  
Crescenzio Gallo

The possible applications of modeling and simulation in the field of bioinformatics are very extensive, ranging from understanding basic metabolic paths to exploring genetic variability. Experimental results carried out with DNA microarrays allow researchers to measure expression levels for thousands of genes simultaneously, across different conditions and over time. A key step in the analysis of gene expression data is the detection of groups of genes that manifest similar expression patterns. In this chapter we examine various methods for analyzing gene expression data, addressing the important topics of (1) selecting the most differentially expressed genes, (2) grouping them by means of their relationships, and (3) classifying samples based on gene expressions.


2008 ◽  
Vol 3 ◽  
pp. BMI.S590 ◽  
Author(s):  
Han-Jin Park ◽  
Jung Hwa Oh ◽  
Seokjoo Yoon ◽  
S.V.S. Rana

Benzene is used as a general purpose solvent. Benzene metabolism starts from phenol and ends with p-benzoquinone and o-benzoquinone. Liver injury inducted by benzene still remains a toxicologic problem. Tumor related genes and immune responsive genes have been studied in patients suffering from benzene exposure. However, gene expression profiles and pathways related to its hepatotoxicity are not known. This study reports the results obtained in the liver of BALB/C mice (SLC, Inc., Japan) administered 0.05 ml/100 g body weight of 2% benzene for six days. Serum, ALT, AST and ALP were determined using automated analyzer (Fuji., Japan). Histopathological observations were made to support gene expression data. c-DNA microarray analyses were performed using Affymetrix Gene-chip system. After six days of benzene exposure, twenty five genes were down regulated whereas nineteen genes were up-regulated. These gene expression changes were found to be related to pathways of biotransformation, detoxification, apoptosis, oxidative stress and cell cycle. It has been shown for the first time that genes corresponding to circadian rhythms are affected by benzene. Results suggest that gene expression profile might serve as potential biomarkers of hepatotoxicity during benzene exposure.


Neurology ◽  
2017 ◽  
Vol 89 (16) ◽  
pp. 1676-1683 ◽  
Author(s):  
Ron Shamir ◽  
Christine Klein ◽  
David Amar ◽  
Eva-Juliane Vollstedt ◽  
Michael Bonin ◽  
...  

Objective:To examine whether gene expression analysis of a large-scale Parkinson disease (PD) patient cohort produces a robust blood-based PD gene signature compared to previous studies that have used relatively small cohorts (≤220 samples).Methods:Whole-blood gene expression profiles were collected from a total of 523 individuals. After preprocessing, the data contained 486 gene profiles (n = 205 PD, n = 233 controls, n = 48 other neurodegenerative diseases) that were partitioned into training, validation, and independent test cohorts to identify and validate a gene signature. Batch-effect reduction and cross-validation were performed to ensure signature reliability. Finally, functional and pathway enrichment analyses were applied to the signature to identify PD-associated gene networks.Results:A gene signature of 100 probes that mapped to 87 genes, corresponding to 64 upregulated and 23 downregulated genes differentiating between patients with idiopathic PD and controls, was identified with the training cohort and successfully replicated in both an independent validation cohort (area under the curve [AUC] = 0.79, p = 7.13E–6) and a subsequent independent test cohort (AUC = 0.74, p = 4.2E–4). Network analysis of the signature revealed gene enrichment in pathways, including metabolism, oxidation, and ubiquitination/proteasomal activity, and misregulation of mitochondria-localized genes, including downregulation of COX4I1, ATP5A1, and VDAC3.Conclusions:We present a large-scale study of PD gene expression profiling. This work identifies a reliable blood-based PD signature and highlights the importance of large-scale patient cohorts in developing potential PD biomarkers.


2015 ◽  
Vol 11 (1) ◽  
pp. 86-96 ◽  
Author(s):  
Aakash Chavan Ravindranath ◽  
Nolen Perualila-Tan ◽  
Adetayo Kasim ◽  
Georgios Drakakis ◽  
Sonia Liggi ◽  
...  

Integrating gene expression profiles with certain proteins can improve our understanding of the fundamental mechanisms in protein–ligand binding.


Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 675 ◽  
Author(s):  
Xia ◽  
Liu ◽  
Zhang ◽  
Guo

High-throughput technologies generate a tremendous amount of expression data on mRNA, miRNA and protein levels. Mining and visualizing the large amount of expression data requires sophisticated computational skills. An easy to use and user-friendly web-server for the visualization of gene expression profiles could greatly facilitate data exploration and hypothesis generation for biologists. Here, we curated and normalized the gene expression data on mRNA, miRNA and protein levels in 23315, 9009 and 9244 samples, respectively, from 40 tissues (The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GETx)) and 1594 cell lines (Cancer Cell Line Encyclopedia (CCLE) and MD Anderson Cell Lines Project (MCLP)). Then, we constructed the Gene Expression Display Server (GEDS), a web-based tool for quantification, comparison and visualization of gene expression data. GEDS integrates multiscale expression data and provides multiple types of figures and tables to satisfy several kinds of user requirements. The comprehensive expression profiles plotted in the one-stop GEDS platform greatly facilitate experimental biologists utilizing big data for better experimental design and analysis. GEDS is freely available on http://bioinfo.life.hust.edu.cn/web/GEDS/.


2005 ◽  
Vol 14 (05) ◽  
pp. 771-789 ◽  
Author(s):  
JIONG YANG ◽  
HAIXUN WANG ◽  
WEI WANG ◽  
PHILIP S. YU

Microarrays are one of the latest breakthroughs in experimental molecular biology, which provide a powerful tool by which the expression patterns of thousands of genes can be monitored simultaneously and are already producing huge amount of valuable data. The concept of bicluster was introduced by Cheng and Church1 to capture the coherence of a subset of genes and a subset of conditions. A set of heuristic algorithms were also designed to either find one bicluster or a set of biclusters, which consist of iterations of masking null values and discovered biclusters, coarse and fine node deletion, node addition, and the inclusion of inverted data. These heuristics inevitably suffer from some serious drawback. The masking of null values and discovered biclusters with random numbers may result in the phenomenon of random interference which in turn impacts the discovery of high quality biclusters. To address this issue and to further accelerate the biclustering process, we generalize the model of bicluster to incorporate null values and propose a probabilistic algorithm (FLOC) that can discover a set of k possibly overlapping biclusters simultaneously. Furthermore, this algorithm can easily be extended to support additional features that suit different requirements at virtually little cost. Experimental study on the yeast gene expression data2 shows that the FLOC algorithm can offer substantial improvements over the previously proposed algorithm.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2779-2779 ◽  
Author(s):  
Andrea Pellagatti ◽  
Moritz Gerstung ◽  
Elli Papaemmanuil ◽  
Luca Malcovati ◽  
Aristoteles Giagounidis ◽  
...  

Abstract A particular profile of gene expression can reflect an underlying molecular abnormality in malignancy. Distinct gene expression profiles and deregulated gene pathways can be driven by specific gene mutations and may shed light on the biology of the disease and lead to the identification of new therapeutic targets. We selected 143 cases from our large-scale gene expression profiling (GEP) dataset on bone marrow CD34+ cells from patients with myelodysplastic syndromes (MDS), for which matching genotyping data were obtained using next-generation sequencing of a comprehensive list of 111 genes involved in myeloid malignancies (including the spliceosomal genes SF3B1, SRSF2, U2AF1 and ZRSR2, as well as TET2, ASXL1and many other). The GEP data were then correlated with the mutational status to identify significantly differentially expressed genes associated with each of the most common gene mutations found in MDS. The expression levels of the mutated genes analyzed were generally lower in patients carrying a mutation than in patients wild-type for that gene (e.g. SF3B1, ASXL1 and TP53), with the exception of RUNX1 for which patients carrying a mutation showed higher expression levels than patients without mutation. Principal components analysis showed that the main directions of gene expression changes (principal components) tend to coincide with some of the common gene mutations, including SF3B1, SRSF2 and TP53. SF3B1 and STAG2 were the mutated genes showing the highest number of associated significantly differentially expressed genes, including ABCB7 as differentially expressed in association with SF3B1 mutation and SULT2A1 in association with STAG2 mutation. We found distinct differentially expressed genes associated with the four most common splicing gene mutations (SF3B1, SRSF2, U2AF1 and ZRSR2) in MDS, suggesting that different phenotypes associated with these mutations may be driven by different effects on gene expression and that the target gene may be different. We have also evaluated the prognostic impact of the GEP data in comparison with that of the genotype data and importantly we have found a larger contribution of gene expression data in predicting progression free survival compared to mutation-based multivariate survival models. In summary, this analysis correlating gene expression data with genotype data has revealed that the mutational status shapes the gene expression landscape. We have identified deregulated genes associated with the most common gene mutations in MDS and found that the prognostic power of gene expression data is greater than the prognostic power provided by mutation data. AP and MG contributed equally to this work. JB and PJC are co-senior authors. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15258-e15258
Author(s):  
Jayesh Desai ◽  
Jie Wang ◽  
Qing Zhou ◽  
Jun Zhao ◽  
Sanjeev Deva ◽  
...  

e15258 Background: Tislelizumab, an anti-PD-1 monoclonal antibody, showed clinical benefit for patients (pts) with NSCLC alone (NCT02407990, CTR20160872) and in combination with chemotherapy (NCT03432598). Gene expression profiles (GEP) associated with response and resistance to tislelizumab in these studies were assessed. Methods: The GEP of baseline tumor samples from 59 nonsquamous (NSQ) and 42 squamous (SQ) NSCLC pts treated with tislelizumab monotherapy (mono) as ≥1L treatment, and 16 NSQ and 21 SQ pts treated with tislelizumab plus chemotherapy (combo) as 1L treatment were assessed using the 1392-gene HTG GEP EdgeSeq panel. NSQ and SQ cohorts were analyzed separately due to distinct GEP features shown by PCA and t-SNE clustering. Results: Tislelizumab mono and combo showed antitumor activity in NSCLC (Table). In 80 biomarker-evaluable samples, inflamed tumor signatures (inflammatory GEP; antigen presentation GEP) were associated with longer overall survival (log-rank test, NSQ mono: P=0.04, 0.003; NSQ combo: P=0.05, 0.02; SQ combo: P=0.06, 0.06). Monotherapy non-responders (NRs) were clustered into 2 subgroups (NR1, NR2) with distinct GEPs. Compared with responders, NR1 had proliferation signatures (elevated cell cycle [CC] and DNA repair) in both NSQ ( P=0.2, 0.02) and SQ ( P=0.03, 0.4) cohorts, trending toward low inflamed tumor signatures. In NR pts receiving combo, CC and DNA repair signatures were not enriched, and high CC and DNA repair scores were observed in some SQ combo responders versus NRs ( P=0.2, 0.02). NR2 had higher M2 macrophage and Treg cell signatures versus responders in both NSQ and SQ mono, despite high inflamed tumor and low proliferation signatures. NR2 also had increased expression of genes related to immune regulation and angiogenesis, including PIK3CD, CCR2, CD244, IRAK3, and MAP4K1 ( P<0.05) in NSQ, and PIK3CD, CCR2, CD40, CD163, MMP12, VEGFC, and TEK ( P<0.05) in SQ. Conclusions: Clinical benefit in pts with NSCLC receiving tislelizumab (mono or combo) was associated with high inflamed tumor signatures, while elevated immune suppressive cell signatures may indicate resistance. High proliferation signatures were associated with resistance to monotherapy, but not to combination therapy. Both immune- and tumor-intrinsic factors may be considered for validation in future clinical trials. [Table: see text]


2012 ◽  
Vol 07 (01n02) ◽  
pp. 41-70 ◽  
Author(s):  
JASON SHULMAN ◽  
LARS SEEMANN ◽  
GREGG W. ROMAN ◽  
GEMUNU H. GUNARATNE

Networks are used to abstract large, highly-coupled sets of objects. Their analyses have included network classification into a few broad classes and selection of small substructures that perform simple yet common tasks. One issue that has received little attention is how the state of a network can be moved according to a pre-specified set of guidelines. In this paper, we address this question in the context of gene networks. In general, neither the full membership of the gene network associated with a biological process nor the precise form of interactions between nodes is known. What is available, through microarrays or sequencing, are gene expression profiles of an organism or its viable mutants. Our approach relies only on these expression profiles, and not on the availability of an accurate model for the network. The first step is to select a small set of core- or master- nodes, such as transcription factors or microRNAs, that can be used to alter the levels of many of the remaining genes in the network. We ask how the state — or solution — of the gene network changes as the levels of these master nodes are altered externally. The object of our study is, not the network, but the surface of these solutions. We argue that it can be approximated using gene expression profiles of the organism and single manipulation of master node activity. This is done through an "effective model." The effective model as well as error estimates for its predictions can be derived from experimental data. The method is validated using synthetic gene networks that have stationary solutions and those that are periodically driven, e.g., circadian networks. An effective model for the oxygen-deprivation network of E.coli is constructed using previously published gene expression profiles, and used to predict the expression levels in a double knockout mutant. Less that 30% of the predictions lie outside the 5% confidence level. We propose the use of the effective model methodology to compute how Drosophila melanogaster in the normal state can be genetically altered into a pre-defined sleep deprived-like state.


Sign in / Sign up

Export Citation Format

Share Document