scholarly journals Time Dependent Gene Expression Changes in the Liver of Mice Treated with Benzene

2008 ◽  
Vol 3 ◽  
pp. BMI.S590 ◽  
Author(s):  
Han-Jin Park ◽  
Jung Hwa Oh ◽  
Seokjoo Yoon ◽  
S.V.S. Rana

Benzene is used as a general purpose solvent. Benzene metabolism starts from phenol and ends with p-benzoquinone and o-benzoquinone. Liver injury inducted by benzene still remains a toxicologic problem. Tumor related genes and immune responsive genes have been studied in patients suffering from benzene exposure. However, gene expression profiles and pathways related to its hepatotoxicity are not known. This study reports the results obtained in the liver of BALB/C mice (SLC, Inc., Japan) administered 0.05 ml/100 g body weight of 2% benzene for six days. Serum, ALT, AST and ALP were determined using automated analyzer (Fuji., Japan). Histopathological observations were made to support gene expression data. c-DNA microarray analyses were performed using Affymetrix Gene-chip system. After six days of benzene exposure, twenty five genes were down regulated whereas nineteen genes were up-regulated. These gene expression changes were found to be related to pathways of biotransformation, detoxification, apoptosis, oxidative stress and cell cycle. It has been shown for the first time that genes corresponding to circadian rhythms are affected by benzene. Results suggest that gene expression profile might serve as potential biomarkers of hepatotoxicity during benzene exposure.

2015 ◽  
Vol 11 (1) ◽  
pp. 86-96 ◽  
Author(s):  
Aakash Chavan Ravindranath ◽  
Nolen Perualila-Tan ◽  
Adetayo Kasim ◽  
Georgios Drakakis ◽  
Sonia Liggi ◽  
...  

Integrating gene expression profiles with certain proteins can improve our understanding of the fundamental mechanisms in protein–ligand binding.


Author(s):  
Crescenzio Gallo

The possible applications of modeling and simulation in the field of bioinformatics are very extensive, ranging from understanding basic metabolic paths to exploring genetic variability. Experimental results carried out with DNA microarrays allow researchers to measure expression levels for thousands of genes simultaneously, across different conditions and over time. A key step in the analysis of gene expression data is the detection of groups of genes that manifest similar expression patterns. In this chapter, the authors examine various methods for analyzing gene expression data, addressing the important topics of (1) selecting the most differentially expressed genes, (2) grouping them by means of their relationships, and (3) classifying samples based on gene expressions.


2020 ◽  
Vol 21 (3) ◽  
pp. 861 ◽  
Author(s):  
Yingdan Yuan ◽  
Bo Zhang ◽  
Xinggang Tang ◽  
Jinchi Zhang ◽  
Jie Lin

Dendrobium is widely used in traditional Chinese medicine, which contains many kinds of active ingredients. In recent years, many Dendrobium transcriptomes have been sequenced. Hence, weighted gene co-expression network analysis (WGCNA) was used with the gene expression profiles of active ingredients to identify the modules and genes that may associate with particular species and tissues. Three kinds of Dendrobium species and three tissues were sampled for RNA-seq to generate a high-quality, full-length transcriptome database. Based on significant changes in gene expression, we constructed co-expression networks and revealed 19 gene modules. Among them, four modules with properties correlating to active ingredients regulation and biosynthesis, and several hub genes were selected for further functional investigation. This is the first time the WGCNA method has been used to analyze Dendrobium transcriptome data. Further excavation of the gene module information will help us to further study the role and significance of key genes, key signaling pathways, and regulatory mechanisms between genes on the occurrence and development of medicinal components of Dendrobium.


Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 675 ◽  
Author(s):  
Xia ◽  
Liu ◽  
Zhang ◽  
Guo

High-throughput technologies generate a tremendous amount of expression data on mRNA, miRNA and protein levels. Mining and visualizing the large amount of expression data requires sophisticated computational skills. An easy to use and user-friendly web-server for the visualization of gene expression profiles could greatly facilitate data exploration and hypothesis generation for biologists. Here, we curated and normalized the gene expression data on mRNA, miRNA and protein levels in 23315, 9009 and 9244 samples, respectively, from 40 tissues (The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GETx)) and 1594 cell lines (Cancer Cell Line Encyclopedia (CCLE) and MD Anderson Cell Lines Project (MCLP)). Then, we constructed the Gene Expression Display Server (GEDS), a web-based tool for quantification, comparison and visualization of gene expression data. GEDS integrates multiscale expression data and provides multiple types of figures and tables to satisfy several kinds of user requirements. The comprehensive expression profiles plotted in the one-stop GEDS platform greatly facilitate experimental biologists utilizing big data for better experimental design and analysis. GEDS is freely available on http://bioinfo.life.hust.edu.cn/web/GEDS/.


2020 ◽  
Vol 32 (11) ◽  
pp. 709-717 ◽  
Author(s):  
Lukas Amann ◽  
Marco Prinz

Abstract The field of macrophage biology has made enormous progress over recent years. This was triggered by the advent of several new techniques such as the establishment of Cre/loxP-based transgenic mouse models that allowed for the first time delineation of the ontogeny and function of specific macrophage populations across many tissues. In addition, the introduction of new high-throughput technologies like bulk RNA sequencing and later single-cell RNA sequencing as well as advances in epigenetic analysis have helped to establish gene expression profiles, enhancer landscapes and local signaling cues that define and shape the identity of diverse macrophage populations. Nonetheless, some macrophage populations, like the ones residing in the peripheral nervous system (PNS), have not been studied in such detail yet. Here, we discuss recent studies that shed new light on the ontogeny, heterogeneity and gene expression profiles of resident macrophages in peripheral nerves and described differential activation of macrophage subsets during and after acute sciatic nerve injury.


2005 ◽  
Vol 14 (05) ◽  
pp. 771-789 ◽  
Author(s):  
JIONG YANG ◽  
HAIXUN WANG ◽  
WEI WANG ◽  
PHILIP S. YU

Microarrays are one of the latest breakthroughs in experimental molecular biology, which provide a powerful tool by which the expression patterns of thousands of genes can be monitored simultaneously and are already producing huge amount of valuable data. The concept of bicluster was introduced by Cheng and Church1 to capture the coherence of a subset of genes and a subset of conditions. A set of heuristic algorithms were also designed to either find one bicluster or a set of biclusters, which consist of iterations of masking null values and discovered biclusters, coarse and fine node deletion, node addition, and the inclusion of inverted data. These heuristics inevitably suffer from some serious drawback. The masking of null values and discovered biclusters with random numbers may result in the phenomenon of random interference which in turn impacts the discovery of high quality biclusters. To address this issue and to further accelerate the biclustering process, we generalize the model of bicluster to incorporate null values and propose a probabilistic algorithm (FLOC) that can discover a set of k possibly overlapping biclusters simultaneously. Furthermore, this algorithm can easily be extended to support additional features that suit different requirements at virtually little cost. Experimental study on the yeast gene expression data2 shows that the FLOC algorithm can offer substantial improvements over the previously proposed algorithm.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2779-2779 ◽  
Author(s):  
Andrea Pellagatti ◽  
Moritz Gerstung ◽  
Elli Papaemmanuil ◽  
Luca Malcovati ◽  
Aristoteles Giagounidis ◽  
...  

Abstract A particular profile of gene expression can reflect an underlying molecular abnormality in malignancy. Distinct gene expression profiles and deregulated gene pathways can be driven by specific gene mutations and may shed light on the biology of the disease and lead to the identification of new therapeutic targets. We selected 143 cases from our large-scale gene expression profiling (GEP) dataset on bone marrow CD34+ cells from patients with myelodysplastic syndromes (MDS), for which matching genotyping data were obtained using next-generation sequencing of a comprehensive list of 111 genes involved in myeloid malignancies (including the spliceosomal genes SF3B1, SRSF2, U2AF1 and ZRSR2, as well as TET2, ASXL1and many other). The GEP data were then correlated with the mutational status to identify significantly differentially expressed genes associated with each of the most common gene mutations found in MDS. The expression levels of the mutated genes analyzed were generally lower in patients carrying a mutation than in patients wild-type for that gene (e.g. SF3B1, ASXL1 and TP53), with the exception of RUNX1 for which patients carrying a mutation showed higher expression levels than patients without mutation. Principal components analysis showed that the main directions of gene expression changes (principal components) tend to coincide with some of the common gene mutations, including SF3B1, SRSF2 and TP53. SF3B1 and STAG2 were the mutated genes showing the highest number of associated significantly differentially expressed genes, including ABCB7 as differentially expressed in association with SF3B1 mutation and SULT2A1 in association with STAG2 mutation. We found distinct differentially expressed genes associated with the four most common splicing gene mutations (SF3B1, SRSF2, U2AF1 and ZRSR2) in MDS, suggesting that different phenotypes associated with these mutations may be driven by different effects on gene expression and that the target gene may be different. We have also evaluated the prognostic impact of the GEP data in comparison with that of the genotype data and importantly we have found a larger contribution of gene expression data in predicting progression free survival compared to mutation-based multivariate survival models. In summary, this analysis correlating gene expression data with genotype data has revealed that the mutational status shapes the gene expression landscape. We have identified deregulated genes associated with the most common gene mutations in MDS and found that the prognostic power of gene expression data is greater than the prognostic power provided by mutation data. AP and MG contributed equally to this work. JB and PJC are co-senior authors. Disclosures: No relevant conflicts of interest to declare.


2004 ◽  
Vol 12 (22) ◽  
pp. 5949-5959 ◽  
Author(s):  
Kristian H. Link ◽  
Federico G. Cruz ◽  
Hai-Fen Ye ◽  
Kathryn E. O’Reilly ◽  
Sarah Dowdell ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bárbara Andrade Barbosa ◽  
Saskia D. van Asten ◽  
Ji Won Oh ◽  
Arantza Farina-Sarasqueta ◽  
Joanne Verheij ◽  
...  

AbstractDeconvolution of bulk gene expression profiles into the cellular components is pivotal to portraying tissue’s complex cellular make-up, such as the tumor microenvironment. However, the inherently variable nature of gene expression requires a comprehensive statistical model and reliable prior knowledge of individual cell types that can be obtained from single-cell RNA sequencing. We introduce BLADE (Bayesian Log-normAl Deconvolution), a unified Bayesian framework to estimate both cellular composition and gene expression profiles for each cell type. Unlike previous comprehensive statistical approaches, BLADE can handle > 20 types of cells due to the efficient variational inference. Throughout an intensive evaluation with > 700 simulated and real datasets, BLADE demonstrated enhanced robustness against gene expression variability and better completeness than conventional methods, in particular, to reconstruct gene expression profiles of each cell type. In summary, BLADE is a powerful tool to unravel heterogeneous cellular activity in complex biological systems from standard bulk gene expression data.


2020 ◽  
Author(s):  
Bárbara Andrade Barbosa ◽  
Saskia van Asten ◽  
Ji-won Oh ◽  
Arantza Fariña-Sarasqueta ◽  
Joanne Verheij ◽  
...  

Abstract High-resolution deconvolution of bulk gene expression profiles is pivotal to characterize the complex cellular make-up of tissues, such as tumor microenvironment. Single-cell RNA-seq provides reliable prior knowledge for deconvolution, however, a comprehensive statistical model is required for efficient utilization due to the inherently variable nature of gene expression. We introduce BLADE (Bayesian Log-normAl Deconvolution), a comprehensive probabilistic framework to estimate both cellular make-up and gene expression profiles of each cell type in each sample. Unlike previous comprehensive statistical approaches, BLADE can handle >20 cell types thanks to the efficient variational inference. Throughout an intensive evaluation using >700 datasets, BLADE showed enhanced robustness against gene expression variability and better completeness than conventional methods, in particular to reconstruct gene expression profiles of each cell type. All-in-all, BLADE is a powerful tool to unravel heterogeneous cellular activity in complex biological systems based on standard bulk gene expression data.


Sign in / Sign up

Export Citation Format

Share Document