BET Bromodomain Degradation As a Therapeutic Strategy in Multiple Myeloma

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1062-1062 ◽  
Author(s):  
Geoffrey M. Matthews ◽  
Sara Gandolfi ◽  
Johanna Bruggentheis ◽  
Ricardo De Matos Simoes ◽  
Dennis L Buckley ◽  
...  

Abstract Multiple myeloma (MM) remains an incurable malignancy with a clear need for novel therapeutic modalities. Moreover, acquired or de novo resistance to established or novel therapeutics remains a major challenge in this, and other, neoplasias. BET Bromodomain inhibitors (BBIs), including JQ1, have potent anti-MM activity in vitro and in in vivo, but do not provide curative outcome and do not induce apoptosis in many tumor cell types. Recently, a "next-generation" BBI, dBET, that causes degradation of BET Bromodomains (BRDs) through CRBN-mediated ubiquitination has been demonstrated to have potent activity in leukemia and myeloma. Here we sought to compare the mechanistic differences between BRD inhibition with BRD degradation in treatment-naive and drug-resistant MM. Additionally, we posited that resistance to dBET treatment could emerge through genetic perturbations and wished to uncover potential mechanisms prior to its clinical utilization. To address this, we compared effects of JQ1 with lead optimized compound dBET6, in a panel of human MM cell lines (± stromal cells), including clones resistant to JQ1, bortezomib and IMIDs, and assessed viability using CS-BLI/CTG assay. RNAseq and reverse phase protein arrays (RPPA) were employed to compare the transcriptional and translational effects of BRD degradation vs. inhibition. Using an open-ended unbiased genome-wide CRISPR (clustered regularly interspaced short palindromic repeats)-associated Cas9 approach, we examined whether we could uncover genes associated with resistance to dBET6. MM1.S cells were transduced with Cas9 and pooled lentiviral particles of the GeCKO library, consisting of 2 pooled sgRNA sub-libraries (~120,000 sgRNAs; targeting ~19,000 genes and ~1800 miRNAs). Using this CRISPR/Cas9-based approach we sought to expedite the isolation of MM cells resistant to dBET6. We treated the pool of cells thrice with dBET (250nM), allowing regrowth between treatments and maintaining a coverage of 1000 cells/sgRNA. dBET6-resistant cells were processed to quantify sgRNA enrichment or depletion, using deep sequencing. We observed dBET6 to have significantly greater potency against MM cells than JQ1, or its combination with lenalidomide, and that MM1S.CRBN-/- cells were resistant to dBET6. Resistance to neither JQ1 nor bortezomib conferred resistance to dBET6. We observed dBET6 to induce rapid and robust (<4hrs) degradation of BRD2, BRD3 and BRD4 and loss of c-MYC protein, compared with JQ1 which caused an apparent increase in BRD4 protein and significantly less c-MYC down-regulation. Interestingly, while dBET6 caused a time-dependent reduction in pro-survival Mcl-1 protein (among others) and increased cleavage of caspase-3/7, JQ1 caused Mcl-1 upregulation and did not induce cleavage of caspase-3/7. As predicted, our CRISPR/Cas9 screen identified significant enrichment of sgRNAs targeting CRBN, as well as several members of the Cullin-RING ligase (CRL) complex, known to play a critical role in E3 ubiquitin ligase activity. Preliminary experiments using individual sgRNAs appear to validate the role the CRL complex in dBET resistance. In summary, our data strongly support the development of dBET for the treatment of treatment-naive and drug-resistant MM. We demonstrate overlapping and distinct mechanisms of action between BRD inhibition vs. degradation and suggest that differential potencies of JQ1 vs. dBET is, at least in part, due to far greater loss of c-MYC and Mcl-1 expression, however further analysis is warranted. Additionally, our results demonstrate that loss of function of CRBN or the CRL complex induces dBET resistance by perturbing dBET-mediated BRD4 degradation. However, it is plausible that additional CRBN/CRL-independent mechanisms of dBET resistance exist that allow cells to survive despite complete degradation of BRDs and this will be a key question to be answered in future studies. Disclosures Bradner: Novartis Institutes for BioMedical Research: Employment.

Blood ◽  
2012 ◽  
Vol 119 (6) ◽  
pp. 1468-1478 ◽  
Author(s):  
Abdel Kareem Azab ◽  
Phong Quang ◽  
Feda Azab ◽  
Costas Pitsillides ◽  
Brian Thompson ◽  
...  

Abstract Interactions between multiple myeloma (MM) cells and the BM microenvironment play a critical role in the pathogenesis of MM and in the development of drug resistance by MM cells. Selectins are involved in extravasation and homing of leukocytes to target organs. In the present study, we focused on adhesion dynamics that involve P-selectin glycoprotein ligand-1 (PSGL-1) on MM cells and its interaction with selectins in the BM microenvironment. We show that PSGL-1 is highly expressed on MM cells and regulates the adhesion and homing of MM cells to cells in the BM microenvironment in vitro and in vivo. This interaction involves both endothelial cells and BM stromal cells. Using loss-of-function studies and the small-molecule pan-selectin inhibitor GMI-1070, we show that PSGL-1 regulates the activation of integrins and downstream signaling. We also document that this interaction regulates MM-cell proliferation in coculture with BM microenvironmental cells and the development of drug resistance. Furthermore, inhibiting this interaction with GMI-1070 enhances the sensitization of MM cells to bortezomib in vitro and in vivo. These data highlight the critical contribution of PSGL-1 to the regulation of growth, dissemination, and drug resistance in MM in the context of the BM microenvironment.


2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Dalia Martinez-Marin ◽  
Courtney Jarvis ◽  
Thomas Nelius ◽  
Stéphanie Filleur

Abstract Macrophages have been recognized as the main inflammatory component of the tumor microenvironment. Although often considered as beneficial for tumor growth and disease progression, tumor-associated macrophages have also been shown to be detrimental to the tumor depending on the tumor microenvironment. Therefore, understanding the molecular interactions between macrophages and tumor cells in relation to macrophages functional activities such as phagocytosis is critical for a better comprehension of their tumor-modulating action. Still, the characterization of these molecular mechanisms in vivo remains complicated due to the extraordinary complexity of the tumor microenvironment and the broad range of tumor-associated macrophage functions. Thus, there is an increasing demand for in vitro methodologies to study the role of cell–cell interactions in the tumor microenvironment. In the present study, we have developed live co-cultures of macrophages and human prostate tumor cells to assess the phagocytic activity of macrophages using a combination of Confocal and Nomarski Microscopy. Using this model, we have emphasized that this is a sensitive, measurable, and highly reproducible functional assay. We have also highlighted that this assay can be applied to multiple cancer cell types and used as a selection tool for a variety of different types of phagocytosis agonists. Finally, combining with other studies such as gain/loss of function or signaling studies remains possible. A better understanding of the interactions between tumor cells and macrophages may lead to the identification of new therapeutic targets against cancer.


2015 ◽  
Vol 113 (1) ◽  
pp. 182-187 ◽  
Author(s):  
Christina H. Eng ◽  
Zuncai Wang ◽  
Diane Tkach ◽  
Lourdes Toral-Barza ◽  
Savuth Ugwonali ◽  
...  

Macroautophagy is a key stress-response pathway that can suppress or promote tumorigenesis depending on the cellular context. Notably, Kirsten rat sarcoma (KRAS)-driven tumors have been reported to rely on macroautophagy for growth and survival, suggesting a potential therapeutic approach of using autophagy inhibitors based on genetic stratification. In this study, we evaluated whether KRAS mutation status can predict the efficacy to macroautophagy inhibition. By profiling 47 cell lines with pharmacological and genetic loss-of-function tools, we were unable to confirm that KRAS-driven tumor lines require macroautophagy for growth. Deletion of autophagy-related 7 (ATG7) by genome editing completely blocked macroautophagy in several tumor lines with oncogenic mutations in KRAS but did not inhibit cell proliferation in vitro or tumorigenesis in vivo. Furthermore, ATG7 knockout did not sensitize cells to irradiation or to several anticancer agents tested. Interestingly, ATG7-deficient and -proficient cells were equally sensitive to the antiproliferative effect of chloroquine, a lysosomotropic agent often used as a pharmacological tool to evaluate the response to macroautophagy inhibition. Moreover, both cell types manifested synergistic growth inhibition when treated with chloroquine plus the tyrosine kinase inhibitors erlotinib or sunitinib, suggesting that the antiproliferative effects of chloroquine are independent of its suppressive actions on autophagy.


2002 ◽  
Vol 68 (11) ◽  
pp. 5718-5727 ◽  
Author(s):  
Li-Wei Lee ◽  
Ching-Hsun Chiou ◽  
John E. Linz

ABSTRACT The activities of two enzymes, a 168-kDa protein and a 40-kDa protein, OmtA, purified from the filamentous fungus Aspergillus parasiticus were reported to convert the aflatoxin pathway intermediate sterigmatocystin to O-methylsterigmatocystin in vitro. Our initial goal was to determine if OmtA is necessary and sufficient to catalyze this reaction in vivo and if this reaction is necessary for aflatoxin synthesis. We generated A. parasiticus omtA-null mutant LW1432 and a maltose binding protein-OmtA fusion protein expressed in Escherichia coli. Enzyme activity analysis of OmtA fusion protein in vitro confirmed the reported catalytic function of OmtA. Feeding studies conducted with LW1432 demonstrated a critical role for OmtA, and the reaction catalyzed by this enzyme in aflatoxin synthesis in vivo. Because of a close regulatory link between aflatoxin synthesis and asexual sporulation (conidiation), we hypothesized a spatial and temporal association between OmtA expression and conidiospore development. We developed a novel time-dependent colony fractionation protocol to analyze the accumulation and distribution of OmtA in fungal colonies grown on a solid medium that supports both toxin synthesis and conidiation. OmtA-specific polyclonal antibodies were purified by affinity chromatography using an LW1432 protein extract. OmtA was not detected in 24-h-old colonies but was detected in 48-h-old colonies using Western blot analysis; the protein accumulated in all fractions of a 72-h-old colony, including cells (0 to 24 h) in which little conidiophore development was observed. OmtA in older fractions of the colony (24 to 72 h) was partly degraded. Fluorescence-based immunohistochemical analysis conducted on thin sections of paraffin-embedded fungal cells from time-fractionated fungal colonies demonstrated that OmtA is evenly distributed among different cell types and is not concentrated in conidiophores. These data suggest that OmtA is present in newly formed fungal tissue and then is proteolytically cleaved as cells in that section of the colony age.


Mouse embryo cells induced to differentiate with the demethylating agent 5- azacytidine represent an excellent model system to investigate the molecular control of development. Clonal derivatives of 10T1/2 cells that have become determined to the myogenic or adipogenic lineages can be isolated from the multipotential parental line after drug treatment. These determined derivatives can be cultured indefinitely and will differentiate into end-stage phenotypes on appropriate stimulation. A gene called Myo D1, recently isolated from such a myoblast line, will confer myogenesis when expressed in 10T1/2 or other cell types (Davis et al. 1987). The cDNA for Myo D1 contains a large number of CpG sequences and the gene is relatively methylated in 10T1/2 cells and an adipocyte derivative, but is demethylated in myogenic derivatives. Myo D1 may therefore be subject to methylation control in vitro . On the other hand, preliminary observations suggest that Myo D1 is not methylated at CCGG sites in vivo so that a de novo methylation event may have occurred in vitro . These observations may have significance in the establishment of immortal cell lines and tumours.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1508-1508
Author(s):  
Douglas H. Thamm ◽  
Daniel B. Tumas ◽  
Hans Reiser ◽  
Grushenka H.I. Wolfgang ◽  
Ilene D. Kurzman ◽  
...  

Abstract Multiple myeloma is an important hematopoietic cancer in humans and pet dogs. While clinical remission can be achieved using currently available antineoplastic agents, eventual drug resistant relapse is common. GS-9219, a novel double prodrug of the anti-proliferative nucleotide analog 9-(2-phosphonylmethoxyethyl) guanine (PMEG), has been shown to have potent cytotoxic activity in vitro in human lymphoblasts and leukemia cell lines and in vivo in naturally occurring non-Hodgkin’s lymphoma in dogs (naive and refractory). We hypothesized that malignant plasma cells in multiple myeloma similarly would possess the intracellular enzymatic machinery necessary for the activation of GS-9219. To generate proof-of-concept, activity and safety data in multiple myeloma, a pilot study with GS-9219 monotherapy was initiated in pet dogs with naturally occurring chemotherapy-naive or refractory multiple myeloma. Three dogs with spontaneously occurring IgA myeloma (1 naive, 2 melphalan-refractory) have been treated with GS-9219 as a 30-minute intravenous infusion weekly for 2 weeks at 1 mg/kg, then every 3 weeks for another 3 treatments at 0.8 mg/kg (total of five GS-9219 doses). To date, major anti-tumor responses have been observed in all 3 multiple myeloma dogs treated with GS-9219. Two dogs are in complete remission as indicated by normalization of serum paraprotein and complete resolution of hypercalcemia, peripheral cytopenias and bone marrow plasmacytosis. The third currently has a strong partial response (normal marrow and >95% reduction in serum paraprotein). The only significant toxicity noted throughout the study was a single episode of transient neutropenia in one dog which resolved and, after a one week delay, treatment was continued without issue. Assessment of durability of response is currently ongoing, with all dogs remaining in remission to date; one dog has remained in complete remission for more than 5 months following completion of the treatment regimen. In conclusion, GS-9219 has significant anti-tumor activity in spontaneous melphalan-refractory or treatment-naive canine multiple myeloma.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3660-3660 ◽  
Author(s):  
Xiaojing Wang ◽  
Anthony L. Sinn ◽  
Attaya Suvannasankha ◽  
Colin D. Crean ◽  
Li Chen ◽  
...  

Abstract ENMD-2076 is a novel, orally-active molecule that has been shown to have significant activity against Aurora A kinase as well as multiple receptor tyrosine kinases (RTK). We investigated the single agent activity of ENMD-2076 against MM cells in vitro and in vivo, and in combination with lenalidomide. ENMD-2076 free base showed significant cytotoxicity against MM cells with a mean LC50 of 3.84±0.86 μM at 48 hours in vitro. Cytotoxicity was associated with cleavage of caspase 3, 8, 9 and PARP, and loss of mitochondrial membrane potential as early as 6 hours. ENMD-2076 free base inhibited c-kit, FGFR-1, 3 and VEGFR1 and subsequently inhibition of downstream targets phosphorylated (p)-BAD, p-Foxo1a and p-GSK-3β was observed at 6 hours. NOD/SCID mice implanted with H929 human plasmacytoma xenografts and treated for 30 days with 50, 100, 200mg/kg/d ENMD-2076 showed a dose-dependent inhibition of tumor growth (Figure 1), with minimal toxicity as assessed by the stable weight of treated animals. Immunohistochemical staining of tumors from sacrificed animals showed significant reduction in Ki67 at all dose levels of treatment compared to control tumors. An increase in cleaved caspase-3 was observed on Western blot from the lysates of H929 tumors obtained from treated animals. ENMD-2076 free base also showed synergistic cytotoxic activity when combined with lenalidomide against H929, MM1.R and MM1.S cells as assessed by MTT assay and Annexin-V/PI staining. Using the Chou-Talalay method, the combination indices (CI) were < 1 for all three cell lines across a range of concentrations of ENMD-2076 free base (0.25–1.0 μM) plus lenalidomide (2.5–10 μM) indicating synergistic activity (CI=0.362 H929; CI=0.315 MM1.R; CI=0.415 MM1.S). Our results provide rationale for the investigation of ENMD-2076 alone and in combination with lenalidomide in patients with multiple myeloma. Figure Figure


2011 ◽  
Vol 55 (4) ◽  
pp. 1366-1376 ◽  
Author(s):  
Christian Callebaut ◽  
Kirsten Stray ◽  
Luong Tsai ◽  
Matt Williams ◽  
Zheng-Yu Yang ◽  
...  

ABSTRACTGS-8374 is a novel bis-tetrahydrofuran HIV-1 protease (PR) inhibitor (PI) with a unique diethylphosphonate moiety. It was selected from a series of analogs containing various di(alkyl)phosphonate substitutions connected via a linker to theparaposition of a P-1 phenyl ring. GS-8374 inhibits HIV-1 PR with high potency (Ki= 8.1 pM) and with no known effect on host proteases. Kinetic and thermodynamic analysis of GS-8374 binding to PR demonstrated an extremely slow off rate for the inhibitor and favorable contributions of both the enthalpic and entropic components to the total free binding energy. GS-8374 showed potent antiretroviral activity in T-cell lines, primary CD4+T cells (50% effective concentration [EC50] = 3.4 to 11.5 nM), and macrophages (EC50= 25.5 nM) and exhibited low cytotoxicity in multiple human cell types. The antiviral potency of GS-8374 was only moderately affected by human serum protein binding, and its combination with multiple approved antiretrovirals showed synergistic effects. When it was tested in a PhenoSense assay against a panel of 24 patient-derived viruses with high-level PI resistance, GS-8374 showed lower mean EC50s and lower fold resistance than any of the clinically approved PIs. Similar to other PIs,in vitrohepatic microsomal metabolism of GS-8374 was efficiently blocked by ritonavir, suggesting a potential for effective pharmacokinetic boostingin vivo. In summary, results from this broadin vitropharmacological profiling indicate that GS-8374 is a promising candidate to be further assessed as a new antiretroviral agent with potential for clinical efficacy in both treatment-naïve and -experienced patients.


2008 ◽  
Vol 93 (5) ◽  
pp. 1865-1873 ◽  
Author(s):  
Daniel Kelberman ◽  
Sandra C. P. de Castro ◽  
Shuwen Huang ◽  
John A. Crolla ◽  
Rodger Palmer ◽  
...  

Abstract Context: Heterozygous, de novo mutations in the transcription factor SOX2 are associated with bilateral anophthalmia or severe microphthalmia and hypopituitarism. Variable additional abnormalities include defects of the corpus callosum and hippocampus. Objective: We have ascertained a further three patients with severe eye defects and pituitary abnormalities who were screened for mutations in SOX2. To provide further evidence of a direct role for SOX2 in hypothalamo-pituitary development, we have studied the expression of the gene in human embryonic tissues. Results: All three patients harbored heterozygous SOX2 mutations: a deletion encompassing the entire gene, an intragenic deletion (c.70_89del), and a novel nonsense mutation (p.Q61X) within the DNA binding domain that results in impaired transactivation. We also show that human SOX2 can inhibit β-catenin-driven reporter gene expression in vitro, whereas mutant SOX2 proteins are unable to repress efficiently this activity. Furthermore, we show that SOX2 is expressed throughout the human brain, including the developing hypothalamus, as well as Rathke’s pouch, the developing anterior pituitary, and the eye. Conclusions: Patients with SOX2 mutations often manifest the unusual phenotype of hypogonadotropic hypogonadism, with sparing of other pituitary hormones despite anterior pituitary hypoplasia. SOX2 expression patterns in human embryonic development support a direct involvement of the protein during development of tissues affected in these individuals. Given the critical role of Wnt-signaling in the development of most of these tissues, our data suggest that a failure to repress the Wnt-β-catenin pathway could be one of the underlying pathogenic mechanisms associated with loss-of-function mutations in SOX2.


2018 ◽  
Author(s):  
Virginie Courchet ◽  
Amanda J Roberts ◽  
Peggy Del Carmine ◽  
Tommy L. Lewis ◽  
Franck Polleux ◽  
...  

SUMMARYRecently, numerous rare de novo mutations have been identified in children diagnosed with autism spectrum disorders (ASD). However, despite the predicted loss-of-function nature of some of these de novo mutations, the affected individuals are heterozygous carriers, which would suggest that most of these candidate genes are haploinsufficient and/or that these mutations lead to expression of dominant-negative forms of the protein. Here, we tested this hypothesis with the gene Nuak1, recently identified as a candidate ASD gene and that we previously identified for its role in the development of cortical connectivity. We report that Nuak1 is happloinsufficient in mice in regard to its function in cortical axon branching in vitro and in vivo. Nuak1+/− mice show a combination of abnormal behavioral traits ranging from defective memory consolidation in a spatial learning task, defects in social novelty (but not social preference) and abnormal sensorimotor gating and prepulse inhibition of the startle response. Overall, our results demonstrate that Nuak1 haploinsufficiency leads to defects in the development of cortical connectivity and a complex array of behavorial deficits compatible with ASD, intellectual disability and schizophrenia.


Sign in / Sign up

Export Citation Format

Share Document