scholarly journals The ERBB network facilitates KRAS-driven lung tumorigenesis

2018 ◽  
Author(s):  
Björn Kruspig ◽  
Tiziana Monteverde ◽  
Sarah Neidler ◽  
Andreas Hock ◽  
Emma Kerr ◽  
...  

AbstractKRAS is the most frequently mutated driver oncogene in human adenocarcinoma of the lung. There are presently no clinically proven strategies for treatment of KRAS-driven lung cancer. Activating mutations in KRAS are thought to confer independence from upstream signaling, however recent data suggest that this independence may not be absolute. Here we show that initiation and progression of KRAS-driven lung tumors requires input from ERBB family RTKs: Multiple ERBB RTKs are expressed and active from the earliest stages of KRAS driven lung tumor development, and treatment with a multi-ERBB inhibitor suppresses formation of KRasG12D-driven lung tumors. We present evidence that ERBB activity amplifies signaling through the core RAS pathway, supporting proliferation of KRAS mutant tumor cells in culture and progression to invasive disease in vivo. Importantly, brief pharmacological inhibition of the ERBB network significantly enhances the therapeutic benefit of MEK inhibition in an autochthonous tumor setting. Our data suggest that lung cancer patients with KRAS-driven disease may benefit from inclusion of multi-ERBB inhibitors in rationally designed treatment strategies.One Sentence SummaryG12 Mutant KRAS requires tonic ERBB network activity for initiation and maintenance of lung cancer

2018 ◽  
Vol 10 (446) ◽  
pp. eaao2565 ◽  
Author(s):  
Björn Kruspig ◽  
Tiziana Monteverde ◽  
Sarah Neidler ◽  
Andreas Hock ◽  
Emma Kerr ◽  
...  

KRAS is the most frequently mutated driver oncogene in human adenocarcinoma of the lung. There are presently no clinically proven strategies for treatment of KRAS-driven lung cancer. Activating mutations in KRAS are thought to confer independence from upstream signaling; however, recent data suggest that this independence may not be absolute. We show that initiation and progression of KRAS-driven lung tumors require input from ERBB family receptor tyrosine kinases (RTKs): Multiple ERBB RTKs are expressed and active from the earliest stages of KRAS-driven lung tumor development, and treatment with a multi-ERBB inhibitor suppresses formation of KRASG12D-driven lung tumors. We present evidence that ERBB activity amplifies signaling through the core RAS pathway, supporting proliferation of KRAS-mutant tumor cells in culture and progression to invasive disease in vivo. Brief pharmacological inhibition of the ERBB network enhances the therapeutic benefit of MEK (mitogen-activated protein kinase kinase) inhibition in an autochthonous tumor setting. Our data suggest that lung cancer patients with KRAS-driven disease may benefit from inclusion of multi-ERBB inhibitors in rationally designed treatment strategies.


Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 615
Author(s):  
Jian Liu ◽  
Tianyuan Wang ◽  
Cynthia J. Willson ◽  
Kyathanahalli S. Janardhan ◽  
San-Pin Wu ◽  
...  

ERBB2 is an oncogenic driver with frequent gene mutations and amplification in human lung tumors and is an attractive target for lung cancer therapy. However, target therapies can be improved by understanding the in vivo mechanisms regulated by ERBB2 during lung tumor development. Here, we generated genetic mouse models to show that Erbb2 loss inhibited lung tumor development induced by deletion of Pten and Smad4. Transcriptome analysis showed that Erbb2 loss suppressed the significant changes of most of the induced genes by ablation of Pten and Smad4. Overlapping with ERBB2-associated human lung cancer genes further identified those ERBB2 downstream players potentially conserved in human and mouse lung tumors. Furthermore, MED24 was identified as a crucial oncogenic target of ERBB2 in lung tumor development. Taken together, ERBB2 is required for the dysregulation of cancer-related genes, such as MED24, during lung tumor development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Theodora Katopodi ◽  
Savvas Petanidis ◽  
Kalliopi Domvri ◽  
Paul Zarogoulidis ◽  
Doxakis Anestakis ◽  
...  

AbstractIntratumoral heterogeneity in lung cancer is essential for evasion of immune surveillance by tumor cells and establishment of immunosuppression. Gathering data reveal that circular RNAs (circRNAs), play a role in the pathogenesis and progression of lung cancer. Particularly Kras-driven circRNA signaling triggers infiltration of myeloid-associated tumor macrophages in lung tumor microenvironment thus establishing immune deregulation, and immunosuppression but the exact pathogenic mechanism is still unknown. In this study, we investigate the role of oncogenic Kras signaling in circRNA-related immunosuppression and its involvement in tumoral chemoresistance. The expression pattern of circRNAs HIPK3 and PTK2 was determined using quantitative polymerase chain reaction (qPCR) in lung cancer patient samples and cell lines. Apoptosis was analyzed by Annexin V/PI staining and FACS detection. M2 macrophage polarization and MDSC subset analysis (Gr1−/CD11b−, Gr1−/CD11b+) were determined by flow cytometry. Tumor growth and metastatic potential were determined in vivo in C57BL/6 mice. Findings reveal intra-epithelial CD163+/CD206+ M2 macrophages to drive Kras immunosuppressive chemoresistance through myeloid differentiation. In particular, monocytic MDSC subsets Gr1−/CD11b−, Gr1−/CD11b+ triggered an M2-dependent immune response, creating an immunosuppressive tumor-promoting network via circHIPK3/PTK2 enrichment. Specifically, upregulation of exosomal cicHIPK3/PTK2 expression prompted Kras-driven intratumoral heterogeneity and guided lymph node metastasis in C57BL/6 mice. Consequent co-inhibition of circPTK2/M2 macrophage signaling suppressed lung tumor growth along with metastatic potential and prolonged survival in vivo. Taken together, these results demonstrate the key role of myeloid-associated macrophages in sustaining lung immunosuppressive neoplasia through circRNA regulation and represent a potential therapeutic target for clinical intervention in metastatic lung cancer.


2020 ◽  
Author(s):  
Rachana Garg ◽  
Mariana Cooke ◽  
Shaofei Wang ◽  
Fernando Benavides ◽  
Martin C. Abba ◽  
...  

ABSTRACTNon-small cell lung cancer (NSCLC), the most frequent subtype of lung cancer, remains a highly lethal malignancy and one of the leading causes of cancer deaths worldwide. Mutant KRAS is the prevailing oncogenic driver of lung adenocarcinoma, the most common histological form of NSCLC. In this study, we examined the role of PKCε, an oncogenic kinase highly expressed in NSCLC and other cancers, in KRAS-driven tumorigenesis. Notably, database analysis revealed an association between PKCε expression and poor outcome in lung adenocarcinoma patients specifically having KRAS mutation. By generating a PKCε-deficient, conditionally activatable allele of oncogenic Kras (LSL-KrasG12D;PKCε−/− mice) we were able to demonstrate the requirement of PKCε for Kras-driven lung tumorigenesis in vivo, which is consistent with the impaired transformed growth observed in PKCε-deficient KRAS-dependent NSCLC cells. Moreover, PKCε-knockout mice were found to be less susceptible to lung tumorigenesis induced by benzo[a]pyrene, a carcinogen that induces mutations in Kras. Mechanistic analysis using RNA-Seq revealed little overlapping for PKCε and KRAS in the control of genes/biological pathways relevant in NSCLC, suggesting that a permissive role of PKCε in KRAS-driven lung tumorigenesis may involve non-redundant mechanisms. Our results thus highlight the relevance and potential of targeting PKCε for lung cancer therapeutics.


2019 ◽  
Vol 11 (483) ◽  
pp. eaaq1238 ◽  
Author(s):  
David H. Peng ◽  
Samrat T. Kundu ◽  
Jared J. Fradette ◽  
Lixia Diao ◽  
Pan Tong ◽  
...  

Mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitors have failed to show clinical benefit in Kirsten rat sarcoma (KRAS) mutant lung cancer due to various resistance mechanisms. To identify differential therapeutic sensitivities between epithelial and mesenchymal lung tumors, we performed in vivo small hairpin RNA screens, proteomic profiling, and analysis of patient tumor datasets, which revealed an inverse correlation between mitogen-activated protein kinase (MAPK) signaling dependency and a zinc finger E-box binding homeobox 1 (ZEB1)–regulated epithelial-to-mesenchymal transition. Mechanistic studies determined that MAPK signaling dependency in epithelial lung cancer cells is due to the scaffold protein interleukin-17 receptor D (IL17RD), which is directly repressed by ZEB1. Lung tumors in multiple Kras mutant murine models with increased ZEB1 displayed low IL17RD expression, accompanied by MAPK-independent tumor growth and therapeutic resistance to MEK inhibition. Suppression of ZEB1 function with miR-200 expression or the histone deacetylase inhibitor mocetinostat sensitized resistant cancer cells to MEK inhibition and markedly reduced in vivo tumor growth, showing a promising combinatorial treatment strategy for KRAS mutant cancers. In human lung tumor samples, high ZEB1 and low IL17RD expression correlated with low MAPK signaling, presenting potential markers that predict patient response to MEK inhibitors.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3823 ◽  
Author(s):  
Madumani Amararathna ◽  
David W. Hoskin ◽  
H. P. Vasantha Rupasinghe

In our previous study, we demonstrated that cyanidin-3-O-glucoside (C3G)-rich haskap (Lonicera caerulea L.) berry extracts can attenuate the carcinogen-induced DNA damage in normal lung epithelial cells in vitro. Here, the efficacy of lyophilized powder of whole haskap berry (C3G-HB) in lowering tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, (NNK)-induced lung tumorigenesis in A/JCr mice was investigated. Three weeks after daily oral administration of C3G-HB (6 mg of C3G in 0.2 g of C3G-HB/mouse/day), lung tumors were initiated by a single intraperitoneal injection of NNK. Dietary C3G-HB supplementation was continued, and 22 weeks later, mice were euthanized. Lung tumors were visualized through positron emission tomography (PET) and magnetic resonance imaging (MRI) 19 weeks after NNK injection. Dietary supplementation of C3G-HB significantly reduced the NNK-induced lung tumor multiplicity and tumor area but did not affect tumor incidence. Immunohistochemical analysis showed reduced expression of proliferative cell nuclear antigen (PCNA) and Ki-67 in lung tissues. Therefore, C3G-HB has the potential to reduce the lung tumorigenesis, and to be used as a source for developing dietary supplements or nutraceuticals for reducing the risk of lung cancer among high-risk populations.


2018 ◽  
Vol 9 (11) ◽  
pp. 5715-5727 ◽  
Author(s):  
Mrityunjay Tyagi ◽  
Biswanath Maity ◽  
Bhaskar Saha ◽  
Ajay Kumar Bauri ◽  
Mahesh Subramanian ◽  
...  

The spice-derived phenolic, malabaricone B induces mitochondrial cell death and reduces lung tumor growthin vivo.


2009 ◽  
Vol 95 (4) ◽  
pp. 508-513 ◽  
Author(s):  
M Waheed Roomi ◽  
Nusrath W Roomi ◽  
Tatiana Kalinovsky ◽  
Matthias Rath ◽  
Aleksandra Niedzwiecki

Aims and background Lung cancer, a leading cause of cancer death, is associated with exposure to inhalation carcinogens, most commonly those found in tobacco smoke. We investigated the in vivo effect of dietary supplementation with a nutrient mixture containing lysine, proline, arginine, ascorbic acid, green tea extract, N-acetyl cysteine, selenium, copper and manganese on the development of urethane-induced lung tumors in male A/J mice. Methods After one week of isolation, seven-week-old male A/J mice (n = 25) weighing 17–19 g were randomly divided into three groups: group A (n = 5), group B (n = 10), and group C (n = 10). Mice in groups B and C were each given a single intraperitoneal injection of urethane (1 mg/g body weight) in saline, whereas group A mice received an injection of saline alone. Groups A and B were fed a regular diet, whereas group C was fed the same diet supplemented with 0.5% nutrient mixture. After 20 weeks, mice were sacrificed, lungs were excised and weighed, and tumors were counted and processed for histology. Results Urethane-challenged mice developed tumors. However, the mean number of tumors and the mean lung weights in the mice on the supplemented diet were significantly reduced, by 49% (P <0.0001) and 18% (P = 0.0025), respectively, compared to mice on the control diet. We observed neither significant differences in body weight gains nor in diet consumption among the mice. Pulmonary lesions were morphologically similar for both the groups (adenomas), but lesions were smaller in the test group. Conclusions The results suggest that nutrient mixture has inhibitory potential on the development of mouse lung tumors induced by urethane


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jianbo Zheng ◽  
Xin Guo ◽  
Yuka Nakamura ◽  
Xiaolei Zhou ◽  
Reimon Yamaguchi ◽  
...  

Peroxiredoxin 4 (PRDX4), initially reported as an antioxidant, is overexpressed in lung cancer and participates in its progression. However, its role in the urethane-induced lung tumor model is undetermined. The aim of this study was to investigate the effect of PRDX4 overexpression on carcinogen-induced lung tumor development. Human PRDX4 overexpression transgenic (Tg) mice (hPRDX4+/+) and non-Tg mice were intraperitoneally injected with urethane to induce lung tumor. After 6 months, tumor formation was compared between groups and possible mechanisms for the difference in tumor development were investigated. The serum and lung PRDX4 expressions were enhanced after urethane stimulation in Tg mice. Both the average number of tumors (≥0.5 mm) and tumor diameter per mouse in the Tg group were significantly larger than in non-Tg controls, while body weight was lower in the Tg group. Compared with non-Tg controls, tumor cell proliferation was enhanced, while tumor cell apoptosis was suppressed in Tg mice. Systemic oxidative stress and oxidative stress in lung tumors were inhibited by PRDX4 overexpression. The balance of prooxidant enzymes and antioxidant enzymes was also shifted to a decreased level in Tg tumor. In lung tumor tissue, the density of microvessel penetrated into tumor was higher in the Tg group; macrophage infiltration was enhanced in Tg tumors, while there was no difference in T lymphocyte infiltration; the expressions of cytokines, including interleukin-1 beta (IL-1β) and matrix metallopeptidase 9 (MMP9), were elevated in Tg tumors, which resulted from enhanced phosphorylation of nuclear factor-κB p65 (NF-κB p65) and c-Jun, respectively. In conclusion, PRDX4 overexpression modulated tumor microenvironment and promoted tumor development in the mouse urethane-induced lung cancer model.


Sign in / Sign up

Export Citation Format

Share Document