scholarly journals In vivo Chemical Reprogramming of Astrocytes into Functional Neurons

2018 ◽  
Author(s):  
Yantao Ma ◽  
Handan Xie ◽  
Xiaomin Du ◽  
Lipeng Wang ◽  
Xueqin Jin ◽  
...  

AbstractMammals lack robust regenerative abilities. Lost cells in impaired tissue could potentially be compensated by converting nearby cells in situ through in vivo reprogramming. Small molecule-induced reprogramming is a spatiotemporally flexible and non-integrative strategy for altering cell fate, which is, in principle, favorable for the in vivo reprogramming in organs with poor regenerative abilities, such as the brain. Here, we demonstrate that in the adult mouse brain, small molecules can reprogram resident astrocytes into functional neurons. The in situ chemically induced neurons (CiNs) resemble endogenous neurons in terms of neuron-specific marker expression and electrophysiological properties. Importantly, these CiNs can integrate into the mouse brain. Our study, for the first time, demonstrates in vivo chemical reprogramming in the adult brain, which could be a novel path for generating desired cells in situ for regenerative medicine.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yantao Ma ◽  
Handan Xie ◽  
Xiaomin Du ◽  
Lipeng Wang ◽  
Xueqin Jin ◽  
...  

AbstractIn mammals, many organs lack robust regenerative abilities. Lost cells in impaired tissue could potentially be compensated by converting nearby cells in situ through in vivo reprogramming. Small molecule-induced cell reprogramming offers a temporally flexible and non-integrative strategy for altering cell fate, which is, in principle, favorable for in vivo reprogramming in organs with notoriously poor regenerative abilities, such as the brain. Here, we demonstrate that in the adult mouse brain, small molecules can reprogram astrocytes into neurons. The in situ chemically induced neurons resemble endogenous neurons in terms of neuron-specific marker expression, electrophysiological properties, and synaptic connectivity. Our study demonstrates the feasibility of in vivo chemical reprogramming in the adult mouse brain and provides a potential approach for developing neuronal replacement therapies.


1991 ◽  
Vol 71 (3) ◽  
pp. 939-944 ◽  
Author(s):  
B. Davis ◽  
H. C. Tseng

To investigate how central and peripheral nerves affect lysozyme secretion from tracheal submucosal glands in ferrets we injected substance P (20 nmol/kg in 200 microliters) intracisternally or intravenously into anesthetized artificially ventilated ferrets. We collected 3-ml samples from a perfused (3 ml/5 min) segment of trachea in situ during 15 min before and 45 min after injection of substance P. Content of lysozyme, a specific marker of tracheal submucosal gland serous cell secretion in ferrets, was measured spectrophotometrically in each sample. Intracisternal substance P increased peak lysozyme output threefold compared with baseline. This increase was abolished completely by cutting both superior laryngeal nerves (SLN) and was partially inhibited by atropine, phentolamine, or propranolol. Intravenous substance P increased peak lysozyme output 10-fold compared with baseline. This increase was partly abolished by cutting both SLN. We concluded that intracisternal substance P stimulated the central nervous system (CNS) and activated cholinergic, adrenergic, and nonadrenergic noncholinergic secretomotor nerves to tracheal glands and that intravenous substance P increased lysozyme secretion both by acting directly on tracheal glands and indirectly on the CNS to activate secretomotor nerves.


Author(s):  
Weike Pei ◽  
Fuwei Shang ◽  
Xi Wang ◽  
Ann-Kathrin Fanti ◽  
Alessandro Greco ◽  
...  

AbstractAdult bone marrow harbors a mosaic of hematopoietic stem cell (HSC) clones of embryonic origin, and recent work suggests that such clones may have coherent lineage fates. To probe under physiological conditions whether HSC clones with different fates are transcriptionally distinct, we developed PolyloxExpress – a Cre recombinase-dependent DNA substrate for in situ barcoding that allows parallel readout of barcodes and transcriptomes in single cells. We describe differentiation-inactive, multilineage and lineage-restricted HSC clones, find that they reside in distinct regions of the transcriptional landscape of hematopoiesis, and identify corresponding gene signatures. All clone types contain proliferating HSCs, indicating that differentiation-inactive HSCs can undergo symmetric self-renewal. Our work establishes an approach for studying determinants of stem cell fate in vivo and provides molecular evidence for fate coherence of HSC clones.


2021 ◽  
Author(s):  
Haimin Song ◽  
Runwei Yang ◽  
Runbin Lai ◽  
Kaishu Li ◽  
Bowen Ni ◽  
...  

Glioblastoma multiforme (GBM) is the most malignant adult brain tumor. The current adjuvant therapies for GBM are disappointing, which are based on cytotoxicity strategy. Thus, other ways should be explored to improve the curative effect. According to the strong invasive ability of GBM cells, we assume a new treatment strategy for GBM by developing a new cell trap device (CTD) with some kind of "attractive" medium loaded in it to attract and capture the tumor cells. The in vitro experiment showed that Hepatocyte Growth Factor(HGF)presented stronger chemotaxis on C6 and U87 cell line than the Epidermal Growth Factor (EGF) and Fibroblast Growth Factor (FGF). A simple in vitro CTD loaded with HGF was made and in vivo experiments results showed that HGF successfully attracted tumor cells from tumor bed in situ into the CTD. This study proposes the new strategy for GBM treatment of "attract and trap" tumor cells is proved to be feasible.


2004 ◽  
pp. 371-380 ◽  
Author(s):  
Y Mizuno ◽  
Y Kanou ◽  
M Rogatcheva ◽  
T Imai ◽  
S Refetoff ◽  
...  

OBJECTIVE: ZAKI-4 was identified as a thyroid hormone-responsive gene in cultured human fibroblasts. A single ZAKI-4 gene encodes two isoforms, ZAKI-4 alpha and beta, both inhibiting calcineurin activity. ZAKI-4 alpha and beta differ at their N termini, and show distinct distribution profiles in human tissues. The aim of this study was to elucidate the organization of the mouse ZAKI-4 gene and to determine the effect of thyroid hormone on the expression of ZAKI-4 isoforms in vivo. DESIGN: We cloned mouse homologues of human ZAKI-4 alpha and beta cDNA. Fluorescence in situ hybridization and bioinformatics analysis were employed to determine the gene organization. The effect of thyroid hormone on the expression of ZAKI-4 isoforms in mouse brain and heart was also studied. METHODS: Total RNA extracted from mouse cerebellum was used to clone ZAKI-4 alpha and beta cDNAs by RT-PCR followed by rapid amplification of cDNA ends. Mice were rendered hypothyroid by feeding a low iodine diet supplemented with propylthiouracil for 2 weeks. In one group (hyperthyroid) L-T(3) was injected i.p. for the last 4 days whereas another group (hypothyroid) received vehicle only. Non-treated mice were controls. RESULTS AND CONCLUSION: Mouse ZAKI-4 alpha and beta cDNAs were highly homologous to the human isoforms. The gene was mapped on chromosome 17qC, syntenic to human chromosome 6 where the human ZAKI-4 gene is located. As observed in human, ZAKI-4 alpha mRNA was expressed only in brain whereas beta mRNA was distributed in other tissues as well, such as heart and skeletal muscle. ZAKI-4 alpha mRNA was lower in the cerebral cortex of hypothyroid mice. Injection of L-T(3) caused an increase in ZAKI-4 beta mRNA in heart; however, expression of neither ZAKI-4 alpha nor beta mRNA was influenced by thyroid status in other tissues. These results indicate that expression of ZAKI-4 alpha and beta isoforms is regulated by thyroid hormone in vivo, and the regulation is isoform- and tissue-specific.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Natalia Avaliani ◽  
Ulrich Pfisterer ◽  
Andreas Heuer ◽  
Malin Parmar ◽  
Merab Kokaia ◽  
...  

Direct conversion of human somatic cells to induced neurons (iNs), using lineage-specific transcription factors has opened new opportunities for cell therapy in a number of neurological diseases, including epilepsy. In most severe cases of epilepsy, seizures often originate in the hippocampus, where populations of inhibitory interneurons degenerate. Thus, iNs could be of potential use to replace these lost interneurons. It is not known, however, if iNs survive and maintain functional neuronal properties for prolonged time periods in in vivo. We transplanted human fibroblast-derived iNs into the adult rat hippocampus and observed a progressive morphological differentiation, with more developed dendritic arborisation at six months as compared to one month. This was accompanied by mature electrophysiological properties and fast high amplitude action potentials at six months after transplantation. This proof-of-principle study suggests that human iNs can be developed as a candidate source for cell replacement therapy in temporal lobe epilepsy.


2020 ◽  
Vol 34 (2) ◽  
Author(s):  
Chao‐Hsiung Hsu ◽  
Stephen Lin ◽  
Ai‐Chen Ho ◽  
T. Derek Johnson ◽  
Paul C. Wang ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (11) ◽  
pp. 1106-1113 ◽  
Author(s):  
Thomas Höfer ◽  
Hans-Reimer Rodewald

Abstract Advances in genetic labeling and barcoding of hematopoietic stem cells (HSCs) in situ now allow direct measurements of physiological HSC output, both quantitatively and qualitatively. Turning on a heritable label in HSCs and measuring the kinetics of label emergence in downstream compartments reveal rates of differentiation and self-renewal of HSCs and progenitor cells, whereas endogenous HSC barcoding probes physiological precursor-product relationships. Labels have been inserted at different stages of the hematopoietic differentiation hierarchy. Recent genetic and functional evidence suggests a phenotype (Tie2+) for tip HSCs. Fate mapping shows that many tip HSCs regularly feed into downstream stages, with individual cells contributing infrequently. Stem and progenitor cells downstream of tip HSCs serve as a major, nearly self-renewing source of day-to-day hematopoiesis, rendering the blood and immune system HSC-independent for extended periods of time. HSCs realize multilineage output, yet, fates restricted to several lineages or even a single lineage have also been observed. Single HSCs within a clone in the bone marrow that develop from a fetal HSC precursor have been observed to express clone-specific fates. Thus, the new tools probing HSC differentiation in situ are progressing beyond assays for HSC activity based on proliferation measurements and fates of transplanted stem cells, and the data challenge lineage interpretations of single-cell gene expression snapshots. Linking in vivo fate analyses to gene expression and other molecular determinants of cell fate will aid in unraveling the mechanisms of lineage commitment and the architecture of physiological hematopoiesis.


2020 ◽  
Author(s):  
Josefina Maranzano ◽  
Mahsa Dadar ◽  
Antony Bertrand-Grenier ◽  
Eve-Marie Frigon ◽  
Johanne Pellerin ◽  
...  

ABSTRACTMRI-histology correlation studies of the ex vivo brain mostly employ fresh, extracted (ex situ) specimens, aldehyde fixed by immersion. This method entails manipulation of the fresh brain during extraction, introducing several disadvantages: deformation of the specimen prior to MRI acquisition; introduction of air bubbles in the sulci, creating artifacts; and uneven or poor fixation of the deeper regions of the brain.We propose a new paradigm to scan the ex vivo brain, exploiting a technique used by anatomists: fixation by whole body perfusion, which implies fixation of the brain in situ. This allows scanning the brain surrounded by fluids, meninges, and skull, thus preserving the structural relationships of the brain in vivo and avoiding the disadvantages of ex situ scanning. Our aims were: 1) to assess whether months of in situ fixation resulted in a loss of fluid around the brain; 2) to evaluate whether in situ fixation modified antigenicity for myelin and neuron specific marker; 3) to assess whether in situ fixation improved the register of ex vivo brain images to standard neuroanatomical templates in pseudo-Talairach space for morphometry studies.Five head specimens fixed with a saturated sodium chloride solution (a non-standard fixative used in our anatomy laboratory for neurosurgical simulation) were employed. We acquired 3D T1-weighted (MPRAGE), 2D fluid-attenuated inversion recovery T2-weighted turbo spin echo (T2w-FLAIR), and 3D gradient-echo (3D-GRE) pulse sequences of all brains on a 1.5T MRI. After brain extraction, sections were processed for binding with myelin basic protein (MBP) and neuronal nuclei (NeuN) primary antibodies by immunofluorescence.This study showed that all but one specimen retained fluids in the subarachnoid and ventricular spaces. The specimen that lost fluid was the oldest one, with the longest interval between the time of death and the MRI scanning day being 403 days. All T1-weighted images were successfully processed through a validated pipeline used with in vivo MRIs. The pipeline did not require any modification to run on the ex vivo-in situ scans. All scans were successfully registered to the brain template, more accurately than an ex vivo-ex situ scan and exhibited positive antigenicity for MBP and NeuN.MRI and histology study of the ex vivo-in situ brain fixed by perfusion is feasible and allows for in situ MRI imaging for of at least 10 months post-mortem prior to histology analyses. Fluids around and inside the brain specimens and antigenicity for myelin and neurons were all well preserved.


Sign in / Sign up

Export Citation Format

Share Document