scholarly journals Microrna-184 is Induced by Store-Operated Calcium Entry and Regulates Early Keratinocyte Differentiation

2018 ◽  
Author(s):  
Adam Richardson ◽  
Andrew Powell ◽  
Darren W. Sexton ◽  
Jason L. Parsons ◽  
Nicholas J. Reynolds ◽  
...  

ABSTRACTExtracellular calcium (Ca2+) and store-operated Ca2+ entry (SOCE) govern homeostasis in the mammalian epidermis. Multiple microRNAs (miRNA) also regulate epidermal differentiation, and raised external Ca2+ modulates the expression of several such miRNAs in keratinocytes. However, little is known about the regulation of miR-184 in keratinocytes or the roles of miR-184 in keratinocyte differentiation. Here we report exogenous Ca2+ stimulates miR-184 expression in primary epidermal keratinocytes and that this occurs in a SOCE-dependent manner. Levels of miR-184 were raised by about 30-fold after exposure to 1.5 mM Ca2+ for 5 days. In contrast, neither phorbol ester nor 1, 25-dihydroxyvitamin D3 had any effect on miR-184 levels. Pharmacologic and genetic inhibitors of SOCE abrogated Ca2+-dependent miR-184 induction by 70% or more. Ectopic miR-184 inhibited keratinocyte proliferation and led to a 4-fold increase in the expression of involucrin, a marker of early keratinocyte differentiation. Exogenous miR-184 also triggered a 3-fold rise in levels of cyclin E and doubled the levels of γH2AX, a marker of DNA double strand breaks. The p21 cyclin-dependent kinase (CDK) inhibitor, which supports keratinocyte growth arrest, was also induced by miR-184. Together our findings point to a SOCE:miR-184 pathway that targets a cyclin E/DNA damage regulatory node to facilitate keratinocyte differentiation.

2021 ◽  
Author(s):  
Miyuki Fujishiro ◽  
Shoichi Yahagi ◽  
Shota Takemi ◽  
Takafumi Sakai ◽  
ichiro sakata

Abstract Pyridoxine (PN), one of the vitamers of vitamin B6, plays an important role in the maintenance of epidermal function and is used to treat acne and rough skin. Clinical studies have revealed that PN deficiency causes skin problems such as seborrheic dermatitis and stomatitis. However, the detailed effects of PN and its mechanism of action in epidermal function are poorly understood. In this study, we examined the effects of PN on epidermal function in normal human epidermal keratinocytes and found that PN specifically causes an increase in the expression of profilaggrin mRNA, among marker genes of terminal epidermal differentiation. In addition, PN treatment caused an increase in the production of filaggrin protein in a concentration-dependent manner. Treatment with P2x purinoceptor antagonists, namely, pyridoxal phosphate-6-azo (benzene-2,4-disulfonic acid) tetrasodium salt hydrate and TNP-ATP hydrate, induced an increase in the filaggrin protein levels. Moreover, we showed that elevated filaggrin production induced upon PN treatment was suppressed by ATP (known as P2x purinoceptor agonist). This study is the first to report that PN causes an increase in filaggrin transcription and production, and these results suggest that PN-induced filaggrin production may be a useful target as a daily care component in atopic dermatitis, wherein filaggrin levels are specifically reduced.


1992 ◽  
Vol 12 (11) ◽  
pp. 4862-4871
Author(s):  
B J Aneskievich ◽  
E Fuchs

Terminal differentiation of epidermal keratinocytes is inhibited by 1 microM retinoic acid, a concentration which induces differentiation in a number of cell types, including F9 teratocarcinoma cells. The molecular basis for these opposing retinoid responses is unknown, although retinoic acid receptors (RARs) and retinoid X receptors (RXRs) have been detected in both cell types. When F9 cells are stably transfected with a truncated RAR alpha lacking the E/F domain necessary for ligand binding and RAR/RXR dimerization, action at retinoid response elements is suppressed and cells produce a retinoic acid-resistant phenotype; i.e., they are blocked in differentiation (A. S. Espeseth, S. P. Murphy, and E. Linney, Genes Dev. 3:1647-1656, 1989). If retinoid receptors influence epidermal differentiation only in a negative fashion, then suppression of transactivation at retinoid response elements would be expected to enhance, rather than block, keratinocyte differentiation. In this study, we show that surprisingly, even though constitutive expression of an analogous truncated RAR gamma in keratinocytes specifically suppressed transactivation at retinoid response elements, keratinocytes were blocked, rather than enhanced, in their ability to undergo morphological and biochemical features of differentiation. These findings demonstrate a direct and hitherto unrecognized role for RARs and RXRs in positively as well as negatively regulating epidermal differentiation. Additionally, our studies extend those of Espeseth et al. (Genes Dev. 3:1647-1656, 1989), indicating a novel RAR function independent of the E/F domain.


2010 ◽  
Vol 429 (3) ◽  
pp. 473-483 ◽  
Author(s):  
Jared M. Churko ◽  
Stephanie Langlois ◽  
Xinyue Pan ◽  
Qing Shao ◽  
Dale W. Laird

Although there are currently 62 mutants of Cx43 (connexin43) that can cause ODDD (oculodentodigital dysplasia), only two mutants have also been reported to cause palmar plantar hyperkeratosis. To determine how mutants of Cx43 can lead to this skin disease, REKs (rat epidermal keratinocytes) were engineered to express an ODDD-associated Cx43 mutant always linked to skin disease (fs260), an ODDD-linked Cx43 mutant which has been reported to sometimes cause skin disease (fs230), Cx43 mutants which cause ODDD only (G21R, G138R), a mouse Cx43 mutant linked to ODDD (G60S), a non-disease-linked truncated Cx43 mutant that is trapped in the endoplasmic reticulum (Δ244*) or full-length Cx43. When grown in organotypic cultures, of all the mutants investigated, only the fs260-expressing REKs consistently developed a thinner stratum corneum and expressed lower levels of Cx43, Cx26 and loricrin in comparison with REKs overexpressing wild-type Cx43. REKs expressing the fs260 mutant also developed a larger organotypic vital layer after acetone-induced injury and exhibited characteristics of parakeratosis. Collectively, our results suggest that the increased skin disease burden exhibited in ODDD patients harbouring the fs260 mutant is probably due to multiple additive effects cause by the mutant during epidermal differentiation.


2011 ◽  
Vol 392 (6) ◽  
Author(s):  
Tomoyo Kawakubo ◽  
Atsushi Yasukochi ◽  
Kuniaki Okamoto ◽  
Yoshiko Okamoto ◽  
Seiji Nakamura ◽  
...  

Abstract Cathepsin E (CatE) is predominantly expressed in the rapidly regenerating gastric mucosal cells and epidermal keratinocytes, in addition to the immune system cells. However, the role of CatE in these cells remains unclear. Here we report a crucial role of CatE in keratinocyte terminal differentiation. CatE deficiency in mice induces abnormal keratinocyte differentiation in the epidermis and hair follicle, characterized by the significant expansion of corium and the reduction of subcutaneous tissue and hair follicle. In a model of skin papillomas formed in three different genotypes of syngeneic mice, CatE deficiency results in significantly reduced expression and altered localization of the keratinocyte differentiation induced proteins, keratin 1 and loricrin. Involvement of CatE in the regulation of the expression of epidermal differentiation specific proteins was corroborated by in vitro studies with primary cultures of keratinocytes from the three different genotypes of mice. In wild-type keratinocytes after differentiation inducing stimuli, the CatE expression profile was compatible to those of the terminal differentiation marker genes tested. Overexpression of CatE in mice enhances the keratinocyte terminal differentiation process, whereas CatE deficiency results in delayed differentiation accompanying the reduced expression or the ectopic localization of the differentiation markers. Our findings suggest that in keratinocytes CatE is functionally linked to the expression of terminal differentiation markers, thereby regulating epidermis formation and homeostasis.


2018 ◽  
Author(s):  
Sarmistha Mahanty ◽  
Shruthi Shirur Dakappa ◽  
Rezwan Shariff ◽  
Saloni Patel ◽  
Mruthyunjaya Mathapathi Swamy ◽  
...  

AbstractKeratinocytes maintain epidermis integrity and function including physical and antimicrobial barrier through cellular differentiation. This process is predicted to be controlled by calcium ion gradient and nutritional stress. Keratinocytes undergo proteome changes during differentiation, which enhances the intracellular organelle digestion to sustain the stress conditions. However, the molecular mechanism between epidermal differentiation and organelle homeostasis is poorly understood. Here, we used primary neonatal human epidermal keratinocytes to study the link between cellular differentiation, signaling pathways and organelle turnover. Upon addition of calcium chloride (2 mM) to the culture medium, keratinocytes increased their cell size and the expression of differentiation markers. Moreover, differentiated keratinocytes showed enhanced lysosome biogenesis that was dependent on ATF6-arm of UPR signaling but independent of mTOR-MiT/TFE transcription factors. Furthermore, chemical inhibition of mTOR has increased keratinocyte differentiation and relocalized the MiT/TFE TFs to the lysosome membranes, indicating that autophagy activation promotes the epidermal differentiation. Interestingly, differentiation of keratinocytes resulted in dispersal of fragmented Golgi and lysosomes, and the later organelles showed colocalization with Golgi-tethering proteins, suggesting that these lysosomes possibly originated from Golgi, hence named as Golgi-associated lysosomes (GALs). Consistent to this prediction, inhibition of Golgi function using brefeldin A completely abolished the formation of GALs and the keratinocyte differentiation. Thus, ER stress regulates the biogenesis of GALs, which maintains keratinocyte differentiation and epidermal homeostasis.


1992 ◽  
Vol 12 (11) ◽  
pp. 4862-4871 ◽  
Author(s):  
B J Aneskievich ◽  
E Fuchs

Terminal differentiation of epidermal keratinocytes is inhibited by 1 microM retinoic acid, a concentration which induces differentiation in a number of cell types, including F9 teratocarcinoma cells. The molecular basis for these opposing retinoid responses is unknown, although retinoic acid receptors (RARs) and retinoid X receptors (RXRs) have been detected in both cell types. When F9 cells are stably transfected with a truncated RAR alpha lacking the E/F domain necessary for ligand binding and RAR/RXR dimerization, action at retinoid response elements is suppressed and cells produce a retinoic acid-resistant phenotype; i.e., they are blocked in differentiation (A. S. Espeseth, S. P. Murphy, and E. Linney, Genes Dev. 3:1647-1656, 1989). If retinoid receptors influence epidermal differentiation only in a negative fashion, then suppression of transactivation at retinoid response elements would be expected to enhance, rather than block, keratinocyte differentiation. In this study, we show that surprisingly, even though constitutive expression of an analogous truncated RAR gamma in keratinocytes specifically suppressed transactivation at retinoid response elements, keratinocytes were blocked, rather than enhanced, in their ability to undergo morphological and biochemical features of differentiation. These findings demonstrate a direct and hitherto unrecognized role for RARs and RXRs in positively as well as negatively regulating epidermal differentiation. Additionally, our studies extend those of Espeseth et al. (Genes Dev. 3:1647-1656, 1989), indicating a novel RAR function independent of the E/F domain.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009686
Author(s):  
Akihiro Nita ◽  
Akinobu Matsumoto ◽  
Ronghao Tang ◽  
Chisa Shiraishi ◽  
Kazuya Ichihara ◽  
...  

Although long noncoding RNAs (lncRNAs) are transcripts that do not encode proteins by definition, some lncRNAs actually contain small open reading frames that are translated. TINCR (terminal differentiation–induced ncRNA) has been recognized as a lncRNA that contributes to keratinocyte differentiation. However, we here show that TINCR encodes a ubiquitin-like protein that is well conserved among species and whose expression was confirmed by the generation of mice harboring a FLAG epitope tag sequence in the endogenous open reading frame as well as by targeted proteomics. Forced expression of this protein promoted cell cycle progression in normal human epidermal keratinocytes, and mice lacking this protein manifested a delay in skin wound healing associated with attenuated cell cycle progression in keratinocytes. We termed this protein TINCR-encoded ubiquitin-like protein (TUBL), and our results reveal a role for TINCR in the regulation of keratinocyte proliferation and skin regeneration that is dependent on TUBL.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Julia Lachner ◽  
Florian Ehrlich ◽  
Matthias Wielscher ◽  
Matthias Farlik ◽  
Marcela Hermann ◽  
...  

AbstractThe growth of skin appendages, such as hair, feathers and scales, depends on terminal differentiation of epidermal keratinocytes. Here, we investigated keratinocyte differentiation in avian scutate scales. Cells were isolated from the skin on the legs of 1-day old chicks and subjected to single-cell transcriptomics. We identified two distinct populations of differentiated keratinocytes. The first population was characterized by mRNAs encoding cysteine-rich keratins and corneous beta-proteins (CBPs), also known as beta-keratins, of the scale type, indicating that these cells form hard scales. The second population of differentiated keratinocytes contained mRNAs encoding cysteine-poor keratins and keratinocyte-type CBPs, suggesting that these cells form the soft interscale epidermis. We raised an antibody against keratin 9-like cysteine-rich 2 (KRT9LC2), which is encoded by an mRNA enriched in the first keratinocyte population. Immunostaining confirmed expression of KRT9LC2 in the suprabasal epidermal layers of scutate scales but not in interscale epidermis. Keratinocyte differentiation in chicken leg skin resembled that in human skin with regard to the transcriptional upregulation of epidermal differentiation complex genes and genes involved in lipid metabolism and transport. In conclusion, this study defines gene expression programs that build scutate scales and interscale epidermis of birds and reveals evolutionarily conserved keratinocyte differentiation genes.


2020 ◽  
Vol 21 (24) ◽  
pp. 9412
Author(s):  
Yen Hai Vu ◽  
Akiko Hashimoto-Hachiya ◽  
Masaki Takemura ◽  
Ayako Yumine ◽  
Yasutaka Mitamura ◽  
...  

Skin barrier dysfunction, including reduced filaggrin (FLG) and loricrin (LOR) expression, plays a critical role in atopic dermatitis (AD) development. Since aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, mediates keratinocyte differentiation, it is a potential target for AD treatment. Recently, clinical studies have shown that tapinarof, an AHR modulator, attenuated the development of AD. To examine the molecular mechanism involved in this, we analyzed tapinarof-treated normal human epidermal keratinocytes (NHEKs). Tapinarof upregulated FLG and LOR mRNA and protein expression in an AHR-dependent manner. Tapinarof also induced the secretion of IL-24, a cytokine that activates Janus kinase (JAK)-signal transducer and activator of transcription (STAT), leading to the downregulation of FLG and LOR expression. Knockdown of either IL-24 or STAT3 expression by small interfering RNA (siRNA) transfection augmented the upregulation of FLG and LOR expression induced by tapinarof, suggesting that inhibition of the IL-24/STAT3 axis during AHR activation supports the improvement of skin barrier dysfunction. Furthermore, tapinarof alone could restore the downregulation of FLG and LOR expression induced by IL-4, a key cytokine of AD, and its combination with JAK inhibitors enhanced this effect. These findings provide a new strategy for treating AD using AHR modulators and JAK inhibitors.


Sign in / Sign up

Export Citation Format

Share Document