scholarly journals Peri-saccadic perceptual mislocalization is different for upward saccades

2018 ◽  
Author(s):  
Nikola Grujic ◽  
Nils Brehm ◽  
Cordula Gloge ◽  
Weijie Zhuo ◽  
Ziad M. Hafed

AbstractSaccadic eye movements, which dramatically alter retinal images, are associated with robust peri-movement perceptual alterations. Such alterations, thought to reflect brain mechanisms for maintaining perceptual stability in the face of saccade-induced retinalimage disruptions, are often studied by asking subjects to localize brief stimuli presented around the time of horizontal saccades. However, other saccade directions are not usually explored. Motivated by recently discovered asymmetries in upper and lower visual field representations in the superior colliculus, a structure important for both saccade generation and visual analysis, here we observed significant differences in peri-saccadic perceptual alterations for upward saccades relative to other saccade directions. We also found that, even for purely horizontal saccades, perceptual alterations differ for upper versus lower retinotopic stimulus locations. Our results, coupled with conceptual modeling, suggest that peri-saccadic perceptual alterations might critically depend on neural circuits, like superior colliculus, that asymmetrically represent the upper and lower visual fields.

2018 ◽  
Vol 120 (6) ◽  
pp. 3198-3216 ◽  
Author(s):  
Nikola Grujic ◽  
Nils Brehm ◽  
Cordula Gloge ◽  
Weijie Zhuo ◽  
Ziad M. Hafed

Saccadic eye movements, which dramatically alter retinal images, are associated with robust perimovement perceptual alterations. Such alterations, thought to reflect brain mechanisms for maintaining perceptual stability in the face of saccade-induced retinal image disruptions, are often studied by asking subjects to localize brief stimuli presented around the time of horizontal saccades. However, other saccade directions are not usually explored. Motivated by recently discovered asymmetries in upper and lower visual field representations in the superior colliculus, a structure important for both saccade generation and visual analysis, we observed significant differences in perisaccadic perceptual alterations for upward saccades relative to other saccade directions. We also found that, even for purely horizontal saccades, perceptual alterations differ for upper vs. lower retinotopic stimulus locations. Our results, coupled with conceptual modeling, suggest that perisaccadic perceptual alterations might critically depend on neural circuits, such as superior colliculus, that asymmetrically represent the upper and lower visual fields. NEW & NOTEWORTHY Brief visual stimuli are robustly mislocalized around the time of saccades. Such mislocalization is thought to arise because oculomotor and visual neural maps distort space through foveal magnification. However, other neural asymmetries, such as upper visual field magnification in the superior colliculus, may also exist, raising the possibility that interactions between saccades and visual stimuli would depend on saccade direction. We confirmed this behaviorally by exploring and characterizing perisaccadic perception for upward saccades.


1976 ◽  
Vol 39 (4) ◽  
pp. 722-744 ◽  
Author(s):  
C. W. Mohler ◽  
R. H. Wurtz

1. We investigated the characteristics of cells in the intermediate layers of the superior colliculus that increase their rate of discharge before saccadic eye movements. Eye movements were repeatedly elicited by training rhesus monkeys to fixate on a spot of light and to make saccades to other spots of light when the fixation spot was turned off. 2. The eye movement cells showed consistent variations with their depth within the colliculus. The onset of the cell discharge led the eye movement by less time and the duration of the discharge was shorter as the cell was located closer to the dorsal edge of the intermediate layers. The movements fields (that area of the visual field where a saccade into the area is preceded by a burst of cell discharges) of each successive cell also became smaller as the cells were located more dorsally. The profile of peak discharge frequency remained fairly flat throughout the movement field of the cells regardless of depth of the cell within the colliculus. 3. A new type of eye movement-related cell has been found which usually lies at the border between the superficial and intermediate layers. This cell type, the visually triggered movement cell, increased its rate of discharge before saccades made to a visual stimulus but not before spontaneous saccades of equal amplitude made in the light or the dark. A vigorous discharge of these cells before an eye movement was dependent on the presence of a visual target; the cells seemed to combine the visual input of superficial layer cells and the movement-related input of the intermediate layer cells. The size of the movement fields of these cells were about the same size as the visual fields of superficial layer cells just above them...


2012 ◽  
Vol 107 (9) ◽  
pp. 2442-2452 ◽  
Author(s):  
Husam A. Katnani ◽  
A. J. Van Opstal ◽  
Neeraj J. Gandhi

Population coding is a ubiquitous principle in the nervous system for the proper control of motor behavior. A significant amount of research is dedicated to studying population activity in the superior colliculus (SC) to investigate the motor control of saccadic eye movements. Vector summation with saturation (VSS) has been proposed as a mechanism for how population activity in the SC can be decoded to generate saccades. Interestingly, the model produces different predictions when decoding two simultaneous populations at high vs. low levels of activity. We tested these predictions by generating two simultaneous populations in the SC with high or low levels of dual microstimulation. We also combined varying levels of stimulation with visually induced activity. We found that our results did not perfectly conform to the predictions of the VSS scheme and conclude that the simplest implementation of the model is incomplete. We propose that additional parameters to the model might account for the results of this investigation.


2002 ◽  
Vol 87 (2) ◽  
pp. 679-695 ◽  
Author(s):  
Robijanto Soetedjo ◽  
Chris R. S. Kaneko ◽  
Albert F. Fuchs

There is general agreement that saccades are guided to their targets by means of a motor error signal, which is produced by a local feedback circuit that calculates the difference between desired saccadic amplitude and an internal copy of actual saccadic amplitude. Although the superior colliculus (SC) is thought to provide the desired saccadic amplitude signal, it is unclear whether the SC resides in the feedback loop. To test this possibility, we injected muscimol into the brain stem region containing omnipause neurons (OPNs) to slow saccades and then determined whether the firing of neurons at different sites in the SC was altered. In 14 experiments, we produced saccadic slowing while simultaneously recording the activity of a single SC neuron. Eleven of the 14 neurons were saccade-related burst neurons (SRBNs), which discharged their most vigorous burst for saccades with an optimal amplitude and direction (optimal vector). The optimal directions for the 11 SRBNs ranged from nearly horizontal to nearly vertical, with optimal amplitudes between 4 and 17°. Although muscimol injections into the OPN region produced little change in the optimal vector, they did increase mean saccade duration by 25 to 192.8% and decrease mean saccade peak velocity by 20.5 to 69.8%. For optimal vector saccades, both the acceleration and deceleration phases increased in duration. However, during 10 of 14 experiments, the duration of deceleration increased as fast as or faster than that of acceleration as saccade duration increased, indicating that most of the increase in duration occurred during the deceleration phase. SRBNs in the SC changed their burst duration and firing rate concomitantly with changes in saccadic duration and velocity, respectively. All SRBNs showed a robust increase in burst duration as saccadic duration increased. Five of 11 SRBNs also exhibited a decrease in burst peak firing rate as saccadic velocity decreased. On average across the neurons, the number of spikes in the burst was constant. There was no consistent change in the discharge of the three SC neurons that did not exhibit bursts with saccades. Our data show that the SC receives feedback from downstream saccade-related neurons about the ongoing saccades. However, the changes in SC firing produced in our study do not suggest that the feedback is involved with producing motor error. Instead, the feedback seems to be involved with regulating the duration of the discharge of SRBNs so that the desired saccadic amplitude signal remains present throughout the saccade.


1991 ◽  
Vol 6 (1) ◽  
pp. 3-13 ◽  
Author(s):  
James T. McIlwain

AbstractThis paper reviews evidence that the superior colliculus (SC) of the midbrain represents visual direction and certain aspects of saccadic eye movements in the distribution of activity across a population of cells. Accurate and precise eye movements appear to be mediated, in part at least, by cells of the SC that have large sensory receptive fields and/or discharge in association with a range of saccades. This implies that visual points or saccade targets are represented by patches rather than points of activity in the SC. Perturbation of the pattern of collicular discharge by focal inactivation modifies saccade amplitude and direction in a way consistent with distributed coding. Several models have been advanced to explain how such a code might be implemented in the colliculus. Evidence related to these hypotheses is examined and continuing uncertainties are identified.


2011 ◽  
Vol 106 (4) ◽  
pp. 1862-1874 ◽  
Author(s):  
Jan Churan ◽  
Daniel Guitton ◽  
Christopher C. Pack

Our perception of the positions of objects in our surroundings is surprisingly unaffected by movements of the eyes, head, and body. This suggests that the brain has a mechanism for maintaining perceptual stability, based either on the spatial relationships among visible objects or internal copies of its own motor commands. Strong evidence for the latter mechanism comes from the remapping of visual receptive fields that occurs around the time of a saccade. Remapping occurs when a single neuron responds to visual stimuli placed presaccadically in the spatial location that will be occupied by its receptive field after the completion of a saccade. Although evidence for remapping has been found in many brain areas, relatively little is known about how it interacts with sensory context. This interaction is important for understanding perceptual stability more generally, as the brain may rely on extraretinal signals or visual signals to different degrees in different contexts. Here, we have studied the interaction between visual stimulation and remapping by recording from single neurons in the superior colliculus of the macaque monkey, using several different visual stimulus conditions. We find that remapping responses are highly sensitive to low-level visual signals, with the overall luminance of the visual background exerting a particularly powerful influence. Specifically, although remapping was fairly common in complete darkness, such responses were usually decreased or abolished in the presence of modest background illumination. Thus the brain might make use of a strategy that emphasizes visual landmarks over extraretinal signals whenever the former are available.


2016 ◽  
Vol 116 (6) ◽  
pp. 2541-2549 ◽  
Author(s):  
John R. Economides ◽  
Daniel L. Adams ◽  
Jonathan C. Horton

The superior colliculus is a major brain stem structure for the production of saccadic eye movements. Electrical stimulation at any given point in the motor map generates saccades of defined amplitude and direction. It is unknown how this saccade map is affected by strabismus. Three macaques were raised with exotropia, an outwards ocular deviation, by detaching the medial rectus tendon in each eye at age 1 mo. The animals were able to make saccades to targets with either eye and appeared to alternate fixation freely. To probe the organization of the superior colliculus, microstimulation was applied at multiple sites, with the animals either free-viewing or fixating a target. On average, microstimulation drove nearly conjugate saccades, similar in both amplitude and direction but separated by the ocular deviation. Two monkeys showed a pattern deviation, characterized by a systematic change in the relative position of the two eyes with certain changes in gaze angle. These animals' saccades were slightly different for the right eye and left eye in their amplitude or direction. The differences were consistent with the animals' underlying pattern deviation, measured during static fixation and smooth pursuit. The tectal map for saccade generation appears to be normal in strabismus, but saccades may be affected by changes in the strabismic deviation that occur with different gaze angles.


2020 ◽  
pp. 112067212097604
Author(s):  
Joanna M Jefferis ◽  
Nigel Griffith ◽  
Daniel Blackwell ◽  
Ruth Batty ◽  
Simon J Hickman ◽  
...  

Background: There are increasing numbers of referrals to ophthalmology departments due to blurred optic disc margins. In light of this and the COVID-19 pandemic we aimed to assess whether these patients could be safely assessed without direct contact between the clinician and patient. Methods: We retrospectively reviewed the records of consecutive patients seen in our ‘blurred disc clinic’ between August 2018 and October 2019. We then presented anonymous information from their referral letter, their visual fields and optic nerve images to two consultant neuro-ophthalmologists blinded to the outcome of the face-to-face consultation. In the simulated virtual clinic, the two consultants were asked to choose an outcome for each patient from discharge, investigate or bring in for a face-to-face assessment. Results: Out of 133 patients seen in the blurred disc clinic, six (4.5%) were found to have papilloedema. All six were identified by both neuro-ophthalmologists as needing a face-to-face clinic consultation from the simulated virtual clinic. One hundred and twenty (90%) patients were discharged from the face-to-face clinic at the first consultation. The two neuro-ophthalmologists chose to discharge 114 (95%) and 99 (83%) of these respectively from the simulated virtual clinic. The virtual clinic would have potentially missed serious pathology in only one patient who had normal optic discs but reported diplopia at the previous face-to-face consultation. Conclusions: A virtual clinic model is an effective way of screening for papilloedema in patients referred to the eye clinic with suspicious optic discs. Unrelated or incidental pathology may be missed in a virtual clinic.


2008 ◽  
Vol 100 (1) ◽  
pp. 412-421 ◽  
Author(s):  
Aline Bompas ◽  
Thomas Sterling ◽  
Robert D. Rafal ◽  
Petroc Sumner

Monocular viewing conditions show an asymmetry between stimuli presented in the temporal and nasal visual fields in their efficiency for automatically triggering eye saccades and grasping attention. For instance, observers free to make a saccade to one of two stimuli presented together orient preferentially to the temporal stimulus. Such naso-temporal asymmetry (NTA) has been assumed to reflect the asymmetry in the retinotectal pathway to the superior colliculus. We tested this hypothesis using S cone stimuli, which are invisible to the magnocellular and retinotectal pathways. The observed NTA in choice saccades to bilateral stimuli was no less present for S cone stimuli than for luminance stimuli. Additionally, the amplitude of the NTA can be enhanced when S cone signals are added to luminance signals. These results suggest that behavioral NTA in humans is not diagnostic of retinotectal mediation. Furthermore, we found no asymmetries in latency, suggesting that the NTA in saccade choice does not originate simply from a bottom-up asymmetry in any low level visual pathways.


Sign in / Sign up

Export Citation Format

Share Document