scholarly journals The autism-associated gene Scn2a plays an essential role in synaptic stability and learning

2018 ◽  
Author(s):  
Perry WE Spratt ◽  
Roy Ben-Shalom ◽  
Caroline M Keeshen ◽  
Kenneth J Burke ◽  
Rebecca L Clarkson ◽  
...  

SummaryAutism spectrum disorder (ASD) is strongly associated with de novo gene mutations. One of the most commonly affected genes is SCN2A. ASD-associated SCN2A mutations impair the encoded protein NaV1.2, a sodium channel important for action potential initiation and propagation in developing excitatory cortical neurons. The link between an axonal sodium channel and ASD, a disorder typically attributed to synaptic or transcriptional dysfunction, is unclear. Here, we show NaV1.2 is unexpectedly critical for dendritic excitability and synaptic function in mature pyramidal neurons, in addition to regulating early developmental axonal excitability. NaV1.2 loss reduced action potential backpropagation into dendrites, impairing synaptic plasticity and synaptic stability, even when NaV1.2 expression was disrupted late in development. Furthermore, we identified behavioral impairments in learning and sociability, paralleling observations in children with SCN2A loss. These results reveal a novel dendritic function for NaV1.2, providing insight into cellular mechanisms likely underlying circuit and behavioral dysfunction in ASD.

2021 ◽  
Author(s):  
Mara Almog ◽  
Nurit Degani-Katzav ◽  
Alon Korngreen

Like all biological and chemical reactions, ion channel kinetics are highly sensitive to changes in temperature. Therefore, it is prudent to investigate channel dynamics at physiological temperatures. However, most ion channel investigations are performed at room temperature due to practical considerations, such as recording stability and technical limitations. This problem is especially severe for the fast voltage-gated sodium channel, whose activation kinetics are faster than the time constant of the standard patch-clamp amplifier at physiological temperatures. Thus, biologically detailed simulations of the action potential generation evenly scale the kinetic models of voltage-gated channels acquired at room temperature. To quantitatively study voltage-gated sodium channels' temperature sensitivity, we recorded sodium currents from nucleated patches extracted from the rat's layer five neocortical pyramidal neurons at several temperatures from 13.5 to 30°C. We use these recordings to model the kinetics of the voltage-gated sodium channel as a function of temperature. We show that the temperature dependence of activation differs from that of inactivation. Furthermore, we show that the sustained current has a different temperature dependence than the fast current. Our kinetic and thermodynamic analysis of the current provided a numerical model spanning the entire temperature range. This model reproduced vital features of channel activation and inactivation. Furthermore, the model also reproduced action potential dependence on temperature. Thus, we provide an essential building block for the generation of biologically detailed models of cortical neurons.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Freddy Zhang ◽  
Benjamin Rein ◽  
Ping Zhong ◽  
Treefa Shwani ◽  
Megan Conrow-Graham ◽  
...  

AbstractAutism spectrum disorder (ASD) is a lifelong developmental disorder characterized by social deficits and other behavioral abnormalities. Dysregulation of epigenetic processes, such as histone modifications and chromatin remodeling, have been implicated in ASD pathology, and provides a promising therapeutic target for ASD. Haploinsufficiency of the SHANK3 gene is causally linked to ASD, so adult (3–5 months old) Shank3-deficient male mice were used in this drug discovery study. We found that combined administration of the class I histone deacetylase inhibitor Romidepsin and the histone demethylase LSD1 inhibitor GSK-LSD1 persistently ameliorated the autism-like social preference deficits, while each individual drug alone was largely ineffective. Another behavioral abnormality in adult Shank3-deficient male mice, heightened aggression, was also alleviated by administration of the dual drugs. Furthermore, Romidepsin/GSK-LSD1 treatment significantly increased transcriptional levels of NMDA receptor subunits in prefrontal cortex (PFC) of adult Shank3-deficient mice, resulting in elevated synaptic expression of NMDA receptors and the restoration of NMDAR synaptic function in PFC pyramidal neurons. These results have offered a novel pharmacological intervention strategy for ASD beyond early developmental periods.


Author(s):  
Ahlem Assali ◽  
Jennifer Y. Cho ◽  
Evgeny Tsvetkov ◽  
Abha R. Gupta ◽  
Christopher W. Cowan

AbstractAutism spectrum disorder (ASD) is characterized by impairments in social communication and interaction and restricted, repetitive behaviors. It is frequently associated with comorbidities, such as attention-deficit hyperactivity disorder, altered sensory sensitivity, and intellectual disability. A de novo nonsense mutation in EPHB2 (Q857X) was discovered in a female patient with ASD [13], revealing EPHB2 as a candidate ASD risk gene. EPHB2 is a receptor tyrosine kinase implicated in axon guidance, synaptogenesis, and synaptic plasticity, positioning it as a plausible contributor to the pathophysiology of ASD and related disorders. In this study, we show that the Q857X mutation produced a truncated protein lacking forward signaling and that global disruption of one EphB2 allele (EphB2+/−) in mice produced several behavioral phenotypes reminiscent of ASD and common associated symptoms. EphB2+/− female, but not male, mice displayed increased repetitive behavior, motor hyperactivity, and learning and memory deficits, revealing sex-specific effects of EPHB2 hypofunction. Moreover, we observed a significant increase in the intrinsic excitability, but not excitatory/inhibitory ratio, of motor cortex layer V pyramidal neurons in EphB2+/− female, but not male, mice, suggesting a possible mechanism by which EPHB2 hypofunction may contribute to sex-specific motor-related phenotypes. Together, our findings suggest that EPHB2 hypofunction, particularly in females, is sufficient to produce ASD-associated behaviors and altered cortical functions in mice.


2018 ◽  
Author(s):  
Eric Deneault ◽  
Muhammad Faheem ◽  
Sean H. White ◽  
Deivid C. Rodrigues ◽  
Song Sun ◽  
...  

AbstractInduced pluripotent stem cell (iPSC)-derived cortical neurons are increasingly used as a model to study developmental aspects of Autism Spectrum Disorder (ASD), which is clinically and genetically heterogeneous. To study the complex relationship of rare (penetrant) variant(s) and common (weaker) polygenic risk variant(s) to ASD, “isogenic” iPSC-derived neurons from probands and family-based controls, for modeling, is critical. We developed a standardized set of procedures, designed to control for heterogeneity in reprogramming and differentiation, and generated 53 different iPSC-derived glutamatergic neuronal lines from 25 participants from 12 unrelated families with ASD (14 ASD-affected individuals, 3 unaffected siblings, 8 unaffected parents). Heterozygousde novo(7 families; 16p11.2,NRXN1,DLGAP2,CAPRIN1,VIP,ANOS1,THRA) and rare-inherited (2 families;CNTN5,AGBL4) presumed-damaging variants were characterized in ASD risk genes/loci. In three additional families, functional candidates for ASD (SET), and combinations of putative etiologic variants (GLI3/KIF21AandEHMT2/UBE2Icombinations in separate families), were modeled. We used a large-scale multi-electrode array (MEA) as our primary high-throughput phenotyping assay, followed by patch clamp recordings. Our most compelling new results revealed a consistent spontaneous network hyperactivity in neurons deficient forCNTN5orEHMT2.Our biobank of iPSC-derived neurons and accompanying genomic data are available to accelerate ASD research.


2018 ◽  
Author(s):  
Natalia A. Goriounova ◽  
Djai B. Heyer ◽  
René Wilbers ◽  
Matthijs B. Verhoog ◽  
Michele Giugliano ◽  
...  

AbstractIt is generally assumed that human intelligence relies on efficient processing by neurons in our brain. Behavioral and brain-imaging studies robustly show that higher intelligence associates with faster reaction times and thicker gray matter in temporal and frontal cortical areas. However, no direct evidence exists that links individual neuron activity and structure to human intelligence. Since a large part of cortical grey matter consists of dendrites, these structures likely determine cortical architecture. In addition, dendrites strongly affect functional properties of neurons, including action potential speed. Thereby, dendritic size and action potential firing may constitute variation in cortical thickness, processing speed, and ultimately IQ.To investigate this, we took advantage of brain tissue available from neurosurgery and recorded from pyramidal neurons in the medial temporal cortex, an area showing high association between cortical thickness, cortical activity and intelligence. Next, we reconstructed full dendritic structures of recorded neurons and combined these with brain-imaging data and IQ scores from the same subjects. We find that high IQ scores and large temporal cortical thickness associate with larger, more complex dendrites of human pyramidal neurons. We show in silico that larger dendrites enable pyramidal neurons to track activity of synaptic inputs with higher temporal precision, due to fast action potential initiation. Finally, we find that human pyramidal neurons of individuals with higher IQ scores sustain faster action potentials during repeated firing. These findings provide first evidence that human intelligence is associated with neuronal complexity, action potential speed and efficient information transfer in cortical neurons.


2012 ◽  
Vol 14 (3) ◽  
pp. 293-305 ◽  

Autism is a neurodevelopmental disorder whose diagnosis is based on three behavioral criteria: unusual reciprocal social interactions, deficits in communication, and stereotyped repetitive behaviors with restricted interests. A large number of de novo single gene mutations and chromosomal deletions are associated with autism spectrum disorders. Based on the strong genetic evidence, mice with targeted mutations in homologous genes have been generated as translational research tools. Mouse models of autism have revealed behavioral and biological outcomes of mutations in risk genes. The field is now poised to employ the most robust phenotypes in the most replicable mouse models for preclinical screening of novel therapeutics.


2021 ◽  
Author(s):  
Perry W.E. Spratt ◽  
Roy Ben-Shalom ◽  
Atehsa Sahagun ◽  
Caroline M. Keeshen ◽  
Stephan J. Sanders ◽  
...  

Loss-of-function variants in the gene SCN2A, which encodes the sodium channel NaV1.2, are strongly associated with autism spectrum disorder and intellectual disability. An estimated 20-30% of children with these variants are co-morbid for epilepsy, with altered neuronal activity originating in neocortex, a region where NaV1.2 channels are expressed predominantly in excitatory pyramidal cells. This is paradoxical, as sodium channel loss in excitatory cells would be expected to dampen neocortical activity rather than promote seizure. Here, we examined pyramidal neurons lacking NaV1.2 channels and found that they were intrinsically hyperexcitable, firing high-frequency bursts of action potentials (APs) despite decrements in AP size and speed. Compartmental modeling and dynamic clamp recordings revealed that NaV1.2 loss prevented potassium channels from properly repolarizing neurons between APs, increasing overall excitability by allowing neurons to reach threshold for subsequent APs more rapidly. This cell-intrinsic mechanism may therefore account for why SCN2A loss-of-function can paradoxically promote seizure.


2021 ◽  
Author(s):  
Dennis M Echevarria-Cooper ◽  
Nicole A Hawkins ◽  
Sunita N Misra ◽  
Alexandra Huffman ◽  
Tyler Thaxton ◽  
...  

Genetic variants in SCN2A, encoding the NaV1.2 voltage-gated sodium channel, are associated with a range of neurodevelopmental disorders with overlapping phenotypes. Some variants fit into a framework wherein gain-of-function missense variants that increase neuronal excitability lead to infantile epileptic encephalopathy, while loss-of-function variants that reduce neuronal excitability lead to developmental delay and/or autism spectrum disorder with or without co-morbid seizures. One unique case less easily classified using this binary paradigm is the de novo missense variant SCN2A-p.K1422E, associated with infant-onset developmental delay, infantile spasms, and features of autism spectrum disorder. Prior structure-function studies demonstrated that K1422E substitution alters ion selectivity of NaV1.2, conferring Ca2+ permeability, lowering overall conductance, and conferring resistance to tetrodotoxin (TTX). Based on heterologous expression of K1422E, we developed a compartmental neuron model that predicted mixed effects on channel function and neuronal activity. We also generated Scn2aK1422E mice and characterized effects on neurons and neurological/neurobehavioral phenotypes. Dissociated neurons from heterozygous Scn2aK1422E/+ mice exhibited a novel TTX-resistant current with a reversal potential consistent with mixed ion permeation. Cortical slice recordings from Scn2aK1422E/+ tissue demonstrated impaired action potential initiation and larger Ca2+ transients at the axon initial segment during the rising phase of the action potential, suggesting mixed effects on channel function. Scn2aK1422E/+ mice exhibited rare spontaneous seizures, interictal EEG abnormalities, altered response to induced seizures, reduced anxiety-like behavior and alterations in olfactory-guided social behavior. Overall, Scn2aK1422E/+ mice present with phenotypes similar yet distinct from Scn2a knockout models, consistent with mixed effects of K1422E on NaV1.2 channel function.


2000 ◽  
Vol 84 (6) ◽  
pp. 2799-2809 ◽  
Author(s):  
Darrell A. Henze ◽  
Guillermo R. González-Burgos ◽  
Nathaniel N. Urban ◽  
David A. Lewis ◽  
German Barrionuevo

Dopaminergic modulation of neuronal networks in the dorsolateral prefrontal cortex (PFC) is believed to play an important role in information processing during working memory tasks in both humans and nonhuman primates. To understand the basic cellular mechanisms that underlie these actions of dopamine (DA), we have investigated the influence of DA on the cellular properties of layer 3 pyramidal cells in area 46 of the macaque monkey PFC. Intracellular voltage recordings were obtained with sharp and whole cell patch-clamp electrodes in a PFC brain-slice preparation. All of the recorded neurons in layer 3 ( n = 86) exhibited regular spiking firing properties consistent with those of pyramidal neurons. We found that DA had no significant effects on resting membrane potential or input resistance of these cells. However DA, at concentrations as low as 0.5 μM, increased the excitability of PFC cells in response to depolarizing current steps injected at the soma. Enhanced excitability was associated with a hyperpolarizing shift in action potential threshold and a decreased first interspike interval. These effects required activation of D1-like but not D2-like receptors since they were inhibited by the D1 receptor antagonist SCH23390 (3 μM) but not significantly altered by the D2 antagonist sulpiride (2.5 μM). These results show, for the first time, that DA modulates the activity of layer 3 pyramidal neurons in area 46 of monkey dorsolateral PFC in vitro. Furthermore the results suggest that, by means of these effects alone, DA modulation would generally enhance the response of PFC pyramidal neurons to excitatory currents that reach the action potential initiation site.


2020 ◽  
Vol 295 (25) ◽  
pp. 8589-8595 ◽  
Author(s):  
Motokazu Uchigashima ◽  
Ming Leung ◽  
Takuya Watanabe ◽  
Amy Cheung ◽  
Timmy Le ◽  
...  

Synapse formation is a dynamic process essential for the development and maturation of the neuronal circuitry in the brain. At the synaptic cleft, trans-synaptic protein–protein interactions are major biological determinants of proper synapse efficacy. The balance of excitatory and inhibitory synaptic transmission (E-I balance) stabilizes synaptic activity, and dysregulation of the E-I balance has been implicated in neurodevelopmental disorders, including autism spectrum disorders. However, the molecular mechanisms underlying the E-I balance remain to be elucidated. Here, using single-cell transcriptomics, immunohistochemistry, and electrophysiology approaches to murine CA1 pyramidal neurons obtained from organotypic hippocampal slice cultures, we investigate neuroligin (Nlgn) genes that encode a family of postsynaptic adhesion molecules known to shape excitatory and inhibitory synaptic function. We demonstrate that the NLGN3 protein differentially regulates inhibitory synaptic transmission in a splice isoform–dependent manner at hippocampal CA1 synapses. We also found that distinct subcellular localizations of the NLGN3 isoforms contribute to the functional differences observed among these isoforms. Finally, results from single-cell RNA-Seq analyses revealed that Nlgn1 and Nlgn3 are the major murine Nlgn genes and that the expression levels of the Nlgn splice isoforms are highly diverse in CA1 pyramidal neurons. Our results delineate isoform-specific effects of Nlgn genes on the E-I balance in the murine hippocampus.


Sign in / Sign up

Export Citation Format

Share Document