scholarly journals Transcriptome analysis of Pv11 cells infers the mechanism of desiccation tolerance and recovery

2018 ◽  
Author(s):  
Takahiro G Yamada ◽  
Yoshitaka Suetsugu ◽  
Ruslan Deviatiiarov ◽  
Oleg Gusev ◽  
Richard Cornette ◽  
...  

ABSTRACTThe larvae of the African midge, Polypedilum vanderplanki, can enter an ametabolic state called anhydrobiosis to conquer fatal desiccation stress. The Pv11 cell line, derived from embryos of the midge, shows desiccation tolerance by pretreatment with trehalose before desiccation; they can resume proliferation after rehydration. To address the underlying molecular mechanisms, we desiccated Pv11 cells after pretreatment with the medium containing trehalose and induced proliferation by rehydration. We collected the cells at each before and after desiccation and rehydration step and performed CAGE-seq of mRNA of those cells. By analysing differentially expressed genes (DEGs) among the results of CAGE-seq, we detected 384 DEGs after trehalose treatment and 14 DEGs after rehydration. Hierarchical clustering of the identified DEGs indicated that rehydration returns their expression pattern to that in the control culture state. DEGs involved in various stress responses, detoxification of harmful chemicals, and regulation of oxidoreduction were upregulated by trehalose treatment. DEGs for rehydration supported that DNA repair is one of the potential mechanisms involves recovery. This study provided initial insight into the molecular mechanisms underlying the extreme desiccation tolerance of Pv11 cells with a potential for proliferation following rehydration.

2020 ◽  
Vol 117 (32) ◽  
pp. 19209-19220 ◽  
Author(s):  
Alina Ryabova ◽  
Richard Cornette ◽  
Alexander Cherkasov ◽  
Masahiko Watanabe ◽  
Takashi Okuda ◽  
...  

Some organisms have evolved a survival strategy to withstand severe dehydration in an ametabolic state, called anhydrobiosis. The only known example of anhydrobiosis among insects is observed in larvae of the chironomidPolypedilum vanderplanki. Recent studies have led to a better understanding of the molecular mechanisms underlying anhydrobiosis and the action of specific protective proteins. However, gene regulation alone cannot explain the rapid biochemical reactions and independent metabolic changes that are expected to sustain anhydrobiosis. For this reason, we conducted a comprehensive comparative metabolome–transcriptome analysis in the larvae. We showed that anhydrobiotic larvae adopt a unique metabolic strategy to cope with complete desiccation and, in particular, to allow recovery after rehydration. We argue that trehalose, previously known for its anhydroprotective properties, plays additional vital roles, providing both the principal source of energy and also the restoration of antioxidant potential via the pentose phosphate pathway during the early stages of rehydration. Thus, larval viability might be directly dependent on the total amount of carbohydrate (glycogen and trehalose). Furthermore, in the anhydrobiotic state, energy is stored as accumulated citrate and adenosine monophosphate, allowing rapid reactivation of the citric acid cycle and mitochondrial activity immediately after rehydration, before glycolysis is fully functional. Other specific adaptations to desiccation include potential antioxidants (e.g., ophthalmic acid) and measures to avoid the accumulation of toxic waste metabolites by converting these to stable and inert counterparts (e.g., xanthurenic acid and allantoin). Finally, we confirmed that these metabolic adaptations correlate with unique organization and expression of the corresponding enzyme genes.


2021 ◽  
Author(s):  
Allison J. Matthews ◽  
Hannah M. Rowe ◽  
Jason W. Rosch ◽  
Andrew Camilli

Streptococcus pneumoniae is an opportunistic pathogen that is a common cause of serious invasive diseases such as pneumonia, bacteremia, meningitis, and otitis media. Transmission of this bacterium has classically been thought to occur through inhalation of respiratory droplets and direct contact with nasal secretions. However, the demonstration that S. pneumoniae is desiccation tolerant, and therefore environmentally stable for extended periods of time, opens up the possibility that this pathogen is also transmitted via contaminated surfaces (fomites). To better understand the molecular mechanisms that enable S. pneumoniae to survive periods of desiccation, we performed a high-throughput transposon sequencing (Tn-seq) screen in search of genetic determinants of desiccation tolerance. We identified 42 genes whose disruption reduced desiccation tolerance, and 45 genes that enhanced desiccation tolerance. The nucleotide excision repair pathway was the most enriched category in our Tn-seq results, and we found that additional DNA repair pathways are required for desiccation tolerance, demonstrating the importance of maintaining genome integrity after desiccation. Deletion of the nucleotide excision repair gene uvrA resulted in a delay in transmission between infant mice, indicating a correlation between desiccation tolerance and pneumococcal transmission. Understanding the molecular mechanisms that enable pneumococcal persistence in the environment may enable targeting of these pathways to prevent fomite transmission, thereby preventing the establishment of new colonization and any resulting invasive disease.


2020 ◽  
Author(s):  
Albert Maibam ◽  
Sunil Nigombam ◽  
Harinder Vishwakarma ◽  
Showkat Ahmad Lone ◽  
Kishor Gaikwad ◽  
...  

Abstract The authors have withdrawn this preprint due to erroneous posting.


2019 ◽  
Vol 182 ◽  
pp. 109388 ◽  
Author(s):  
Ting Jiao ◽  
Xiao-Hua Chu ◽  
Zhen-Qiu Gao ◽  
Ting-Ting Yang ◽  
Yu Liu ◽  
...  

2019 ◽  
Vol 171 ◽  
pp. 301-312 ◽  
Author(s):  
Zhenggang Xu ◽  
Meng Dong ◽  
Xiaoyun Peng ◽  
Wenzhen Ku ◽  
Yunlin Zhao ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Takahiro G. Yamada ◽  
Yoshitaka Suetsugu ◽  
Ruslan Deviatiiarov ◽  
Oleg Gusev ◽  
Richard Cornette ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (11) ◽  
pp. e0187124 ◽  
Author(s):  
Haiyan Yang ◽  
Ming Sun ◽  
Shuangji Lin ◽  
Yanhong Guo ◽  
Yongjuan Yang ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Songtao Liu ◽  
Tinashe Zenda ◽  
Anyi Dong ◽  
Yatong Yang ◽  
Nan Wang ◽  
...  

Drought is the major abiotic stress threatening maize (Zea mays L.) production globally. Despite recent scientific headway in deciphering maize drought stress responses, the overall picture of key genes, pathways, and co-expression networks regulating maize drought tolerance is still fragmented. Therefore, deciphering the molecular basis of maize drought tolerance remains pertinent. Here, through a comprehensive comparative leaf transcriptome analysis of drought-tolerant hybrid ND476 plants subjected to water-sufficient and water-deficit treatment conditions at flared (V12), tasseling (VT), the prophase of grain filling (R2), and the anaphase of grain filling (R4) crop growth stages, we report growth-stage-specific molecular mechanisms regulating maize drought stress responses. Based on the transcriptome analysis, a total of 3,451 differentially expressed genes (DEGs) were identified from the four experimental comparisons, with 2,403, 650, 397, and 313 DEGs observed at the V12, VT, R1, and R4 stages, respectively. Subsequently, 3,451 DEGs were divided into 12 modules by weighted gene co-expression network analysis (WGCNA), comprising 277 hub genes. Interestingly, the co-expressed genes that clustered into similar modules exhibited diverse expression tendencies and got annotated to different GO terms at different stages. MapMan analysis revealed that DEGs related to stress signal transduction, detoxification, transcription factor regulation, hormone signaling, and secondary metabolites biosynthesis were universal across the four growth stages. However, DEGs associated with photosynthesis and amino acid metabolism; protein degradation; transport; and RNA transcriptional regulation were uniquely enriched at the V12, VT, R2, and R4 stages, respectively. Our results affirmed that maize drought stress adaptation is a growth-stage-specific response process, and aid in clarifying the fundamental growth-stage-specific mechanisms regulating drought stress responses in maize. Moreover, genes and metabolic pathways identified here can serve as valuable genetic resources or selection targets for further functional validation experiments.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 693
Author(s):  
Jijun Li ◽  
Sidra Iqbal ◽  
Yuting Zhang ◽  
Yahui Chen ◽  
Zengdong Tan ◽  
...  

Flooding results in significant crop yield losses due to exposure of plants to hypoxic stress. Various studies have reported the effect of flooding stress at seedling establishment or later stages. However, the molecular mechanism prevailing at the germination stage under flooding stress remains enigmatic. The present study highlights the comparative transcriptome analysis in two rapeseed lines, i.e., flooding-tolerant (Santana) and -sensitive (23651) lines under control and 6-h flooding treatments at the germination stage. A total of 1840 up-regulated and 1301 down-regulated genes were shared by both lines in response to flooding. There were 4410 differentially expressed genes (DEGs) with increased expression and 4271 DEGs with reduced expression shared in both control and flooding conditions. Gene ontology (GO) enrichment analysis revealed that “transcription regulation”, “structural constituent of cell wall”, “reactive oxygen species metabolic”, “peroxidase”, oxidoreductase”, and “antioxidant activity” were the common processes in rapeseed flooding response. In addition, the processes such as “hormone-mediated signaling pathway”, “response to organic substance response”, “motor activity”, and “microtubule-based process” are likely to confer rapeseed flooding resistance. Mclust analysis clustered DEGs into nine modules; genes in each module shared similar expression patterns and many of these genes overlapped with the top 20 DEGs in some groups. This work provides a comprehensive insight into gene responses and the regulatory network in rapeseed flooding stress and provides guidelines for probing the underlying molecular mechanisms in flooding resistance.


Sign in / Sign up

Export Citation Format

Share Document