scholarly journals Genome-wide analyses supported by RNA-Seq reveal non-canonical splice sites in plant genomes

2018 ◽  
Author(s):  
Boas Pucker ◽  
Samuel F. Brockington

ABSTRACTMost eukaryotic genes comprise exons and introns thus requiring the precise removal of introns from pre-mRNAs to enable protein biosynthesis. U2 and U12 spliceosomes catalyze this step by recognizing motifs on the transcript in order to remove the introns. A process which is dependent on precise definition of exon-intron borders by splice sites, which are consequently highly conserved across species. Only very few combinations of terminal dinucleotides are frequently observed at intron ends, dominated by the canonical GT-AG splice sites on the DNA level.Here we investigate the occurrence of diverse combinations of dinucleotides at predicted splice sites. Analyzing 121 plant genome sequences based on their annotation revealed strong splice site conservation across species, annotation errors, and true biological divergence from canonical splice sites. The frequency of non-canonical splice sites clearly correlates with their divergence from canonical ones indicating either an accumulation of probably neutral mutations, or evolution towards canonical splice sites. Strong conservation across multiple species and non-random accumulation of substitutions in splice sites indicate a functional relevance of non-canonical splice sites. The average composition of splice sites across all investigated species is 98.7% for GT-AG, 1.2% for GC-AG, 0.06% for AT-AC, and 0.09% for minor non-canonical splice sites. RNA-Seq data sets of 35 species were incorporated to validate non-canonical splice site predictions through gaps in sequencing reads alignments and to demonstrate the expression of affected genes. We conclude thatbona fidenon-canonical splice sites are present and appear to be functionally relevant in most plant genomes, if at low abundance.


2019 ◽  
Author(s):  
Katharina Frey ◽  
Boas Pucker

AbstractMost protein encoding genes in eukaryotes contain introns which are interwoven with exons. After transcription, introns need to be removed in order to generate the final mRNA which can be translated into an amino acid sequence. Precise excision of introns by the spliceosome requires conserved dinucleotides which mark the splice sites. However, there are variations of the highly conserved combination of GT at the 5’ end and AG at the 3’ end of an intron in the genome. GC-AG and AT-AC are two major non-canonical splice site combinations which have been known for years. During the last years, various minor non-canonical splice site combinations were detected with numerous dinucleotide permutations. Here we expand systematic investigations of non-canonical splice site combinations in plants to all eukaryotes by analysing fungal and animal genome sequences. Comparisons of splice site combinations between these three kingdoms revealed several differences such as a substantially increased CT-AC frequency in fungal genome sequences. Canonical GT-AG splice site combinations in antisense transcripts could be one explanation for this observation. In addition, high numbers of GA-AG splice site combinations were observed in Eurytemora affinis and Oikopleura dioica. A variant in one U1 snRNA isoform might allow the recognition of GA as 5’ splice site. In depth investigation of splice site usage based on RNA-Seq read mappings indicates a generally higher flexibility of the 3’ splice site compared to the 5’ splice site across animals, fungi, and plants.



BMC Genomics ◽  
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Boas Pucker ◽  
Samuel F. Brockington


2007 ◽  
Vol 283 (3) ◽  
pp. 1211-1215 ◽  
Author(s):  
Klemens J. Hertel

Pre-mRNA splicing is a fundamental process required for the expression of most metazoan genes. It is carried out by the spliceosome, which catalyzes the removal of noncoding intronic sequences to assemble exons into mature mRNAs prior to export and translation. Given the complexity of higher eukaryotic genes and the relatively low level of splice site conservation, the precision of the splicing machinery in recognizing and pairing splice sites is impressive. Introns ranging in size from <100 up to 100,000 bases are removed efficiently. At the same time, a large number of alternative splicing events are observed between different cell types, during development, or during other biological processes. This extensive alternative splicing implies a significant flexibility of the spliceosome to identify and process exons within a given pre-mRNA. To reach this flexibility, splice site selection in higher eukaryotes has evolved to depend on multiple parameters such as splice site strength, the presence or absence of splicing regulators, RNA secondary structures, the exon/intron architecture, and the process of pre-mRNA synthesis itself. The relative contributions of each of these parameters control how efficiently splice sites are recognized and flanking introns are removed.



Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 458 ◽  
Author(s):  
Katharina Frey ◽  
Boas Pucker

Most protein-encoding genes in eukaryotes contain introns, which are interwoven with exons. Introns need to be removed from initial transcripts in order to generate the final messenger RNA (mRNA), which can be translated into an amino acid sequence. Precise excision of introns by the spliceosome requires conserved dinucleotides, which mark the splice sites. However, there are variations of the highly conserved combination of GT at the 5′ end and AG at the 3′ end of an intron in the genome. GC-AG and AT-AC are two major non-canonical splice site combinations, which have been known for years. Recently, various minor non-canonical splice site combinations were detected with numerous dinucleotide permutations. Here, we expand systematic investigations of non-canonical splice site combinations in plants across eukaryotes by analyzing fungal and animal genome sequences. Comparisons of splice site combinations between these three kingdoms revealed several differences, such as an apparently increased CT-AC frequency in fungal genome sequences. Canonical GT-AG splice site combinations in antisense transcripts are a likely explanation for this observation, thus indicating annotation errors. In addition, high numbers of GA-AG splice site combinations were observed in Eurytemora affinis and Oikopleura dioica. A variant in one U1 small nuclear RNA (snRNA) isoform might allow the recognition of GA as a 5′ splice site. In depth investigation of splice site usage based on RNA-Seq read mappings indicates a generally higher flexibility of the 3′ splice site compared to the 5′ splice site across animals, fungi, and plants.



2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Matthew Chung ◽  
Vincent M. Bruno ◽  
David A. Rasko ◽  
Christina A. Cuomo ◽  
José F. Muñoz ◽  
...  

AbstractAdvances in transcriptome sequencing allow for simultaneous interrogation of differentially expressed genes from multiple species originating from a single RNA sample, termed dual or multi-species transcriptomics. Compared to single-species differential expression analysis, the design of multi-species differential expression experiments must account for the relative abundances of each organism of interest within the sample, often requiring enrichment methods and yielding differences in total read counts across samples. The analysis of multi-species transcriptomics datasets requires modifications to the alignment, quantification, and downstream analysis steps compared to the single-species analysis pipelines. We describe best practices for multi-species transcriptomics and differential gene expression.



2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhengjie Chen ◽  
Dengguo Tang ◽  
Jixing Ni ◽  
Peng Li ◽  
Le Wang ◽  
...  

Abstract Background Maize is one of the most important field crops in the world. Most of the key agronomic traits, including yield traits and plant architecture traits, are quantitative. Fine mapping of genes/ quantitative trait loci (QTL) influencing a key trait is essential for marker-assisted selection (MAS) in maize breeding. However, the SNP markers with high density and high polymorphism are lacking, especially kompetitive allele specific PCR (KASP) SNP markers that can be used for automatic genotyping. To date, a large volume of sequencing data has been produced by the next generation sequencing technology, which provides a good pool of SNP loci for development of SNP markers. In this study, we carried out a multi-step screening method to identify kompetitive allele specific PCR (KASP) SNP markers based on the RNA-Seq data sets of 368 maize inbred lines. Results A total of 2,948,985 SNPs were identified in the high-throughput RNA-Seq data sets with the average density of 1.4 SNP/kb. Of these, 71,311 KASP SNP markers (the average density of 34 KASP SNP/Mb) were developed based on the strict criteria: unique genomic region, bi-allelic, polymorphism information content (PIC) value ≥0.4, and conserved primer sequences, and were mapped on 16,161 genes. These 16,161 genes were annotated to 52 gene ontology (GO) terms, including most of primary and secondary metabolic pathways. Subsequently, the 50 KASP SNP markers with the PIC values ranging from 0.14 to 0.5 in 368 RNA-Seq data sets and with polymorphism between the maize inbred lines 1212 and B73 in in silico analysis were selected to experimentally validate the accuracy and polymorphism of SNPs, resulted in 46 SNPs (92.00%) showed polymorphism between the maize inbred lines 1212 and B73. Moreover, these 46 polymorphic SNPs were utilized to genotype the other 20 maize inbred lines, with all 46 SNPs showing polymorphism in the 20 maize inbred lines, and the PIC value of each SNP was 0.11 to 0.50 with an average of 0.35. The results suggested that the KASP SNP markers developed in this study were accurate and polymorphic. Conclusions These high-density polymorphic KASP SNP markers will be a valuable resource for map-based cloning of QTL/genes and marker-assisted selection in maize. Furthermore, the method used to develop SNP markers in maize can also be applied in other species.



Genetics ◽  
1999 ◽  
Vol 153 (1) ◽  
pp. 497-506 ◽  
Author(s):  
Rasmus Nielsen ◽  
Daniel M Weinreich

Abstract McDonald/Kreitman tests performed on animal mtDNA consistently reveal significant deviations from strict neutrality in the direction of an excess number of polymorphic nonsynonymous sites, which is consistent with purifying selection acting on nonsynonymous sites. We show that under models of recurrent neutral and deleterious mutations, the mean age of segregating neutral mutations is greater than the mean age of segregating selected mutations, even in the absence of recombination. We develop a test of the hypothesis that the mean age of segregating synonymous mutations equals the mean age of segregating nonsynonymous mutations in a sample of DNA sequences. The power of this age-of-mutation test and the power of the McDonald/Kreitman test are explored by computer simulations. We apply the new test to 25 previously published mitochondrial data sets and find weak evidence for selection against nonsynonymous mutations.



2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yance Feng ◽  
Lei M. Li

Abstract Background Normalization of RNA-seq data aims at identifying biological expression differentiation between samples by removing the effects of unwanted confounding factors. Explicitly or implicitly, the justification of normalization requires a set of housekeeping genes. However, the existence of housekeeping genes common for a very large collection of samples, especially under a wide range of conditions, is questionable. Results We propose to carry out pairwise normalization with respect to multiple references, selected from representative samples. Then the pairwise intermediates are integrated based on a linear model that adjusts the reference effects. Motivated by the notion of housekeeping genes and their statistical counterparts, we adopt the robust least trimmed squares regression in pairwise normalization. The proposed method (MUREN) is compared with other existing tools on some standard data sets. The goodness of normalization emphasizes on preserving possible asymmetric differentiation, whose biological significance is exemplified by a single cell data of cell cycle. MUREN is implemented as an R package. The code under license GPL-3 is available on the github platform: github.com/hippo-yf/MUREN and on the conda platform: anaconda.org/hippo-yf/r-muren. Conclusions MUREN performs the RNA-seq normalization using a two-step statistical regression induced from a general principle. We propose that the densities of pairwise differentiations are used to evaluate the goodness of normalization. MUREN adjusts the mode of differentiation toward zero while preserving the skewness due to biological asymmetric differentiation. Moreover, by robustly integrating pre-normalized counts with respect to multiple references, MUREN is immune to individual outlier samples.



Genetics ◽  
2000 ◽  
Vol 155 (1) ◽  
pp. 431-449 ◽  
Author(s):  
Ziheng Yang ◽  
Rasmus Nielsen ◽  
Nick Goldman ◽  
Anne-Mette Krabbe Pedersen

AbstractComparison of relative fixation rates of synonymous (silent) and nonsynonymous (amino acid-altering) mutations provides a means for understanding the mechanisms of molecular sequence evolution. The nonsynonymous/synonymous rate ratio (ω = dN/dS) is an important indicator of selective pressure at the protein level, with ω = 1 meaning neutral mutations, ω &lt; 1 purifying selection, and ω &gt; 1 diversifying positive selection. Amino acid sites in a protein are expected to be under different selective pressures and have different underlying ω ratios. We develop models that account for heterogeneous ω ratios among amino acid sites and apply them to phylogenetic analyses of protein-coding DNA sequences. These models are useful for testing for adaptive molecular evolution and identifying amino acid sites under diversifying selection. Ten data sets of genes from nuclear, mitochondrial, and viral genomes are analyzed to estimate the distributions of ω among sites. In all data sets analyzed, the selective pressure indicated by the ω ratio is found to be highly heterogeneous among sites. Previously unsuspected Darwinian selection is detected in several genes in which the average ω ratio across sites is &lt;1, but in which some sites are clearly under diversifying selection with ω &gt; 1. Genes undergoing positive selection include the β-globin gene from vertebrates, mitochondrial protein-coding genes from hominoids, the hemagglutinin (HA) gene from human influenza virus A, and HIV-1 env, vif, and pol genes. Tests for the presence of positively selected sites and their subsequent identification appear quite robust to the specific distributional form assumed for ω and can be achieved using any of several models we implement. However, we encountered difficulties in estimating the precise distribution of ω among sites from real data sets.



1988 ◽  
Vol 8 (5) ◽  
pp. 2042-2051
Author(s):  
K Wiebauer ◽  
J J Herrero ◽  
W Filipowicz

The report that human growth hormone pre-mRNA is not processed in transgenic plant tissues (A. Barta, K. Sommergruber, D. Thompson, K. Hartmuth, M.A. Matzke, and A.J.M. Matzke, Plant Mol. Biol. 6:347-357, 1986) has suggested that differences in mRNA splicing processes exist between plants and animals. To gain more information about the specificity of plant pre-mRNA processing, we have compared the splicing of the soybean leghemoglobin pre-mRNA with that of the human beta-globin pre-mRNA in transfected plant (Orychophragmus violaceus and Nicotiana tabacum) protoplasts and mammalian (HeLa) cells. Of the three introns of leghemoglobin pre-mRNA, only intron 2 was correctly and efficiently processed in HeLa cells. The 5' splice sites of the remaining two introns were faithfully recognized, but correct processing of the 3' sites took place only rarely (intron 1) or not at all (intron 3); cryptic 3' splice sites were used instead. While the first intron in human beta-globin pre-mRNA was not spliced in transfected plant protoplasts, intron 2 processing occurred at a low level, indicating that some mammalian introns can be recognized by the plant intron-splicing machinery. However, excision of intron 2 proved to be incorrect, involving the authentic 5' splice site and a cryptic 3' splice site. Our results indicate that the mechanism of 3'-splice-site selection during intron excision differs between plants and animals. This conclusion is supported by analysis of the 3'-splice-site consensus sequences in animal and plant introns which revealed that polypyrimidine tracts, characteristic of animal introns, are not present in plant pre-mRNAs. It is proposed that an elevated AU content of plant introns is important for their processing.



Sign in / Sign up

Export Citation Format

Share Document