scholarly journals Use of a filter cartridge combined with intra-cartridge bead beating improves detection of microbial DNA from water samples

2018 ◽  
Author(s):  
Masayuki Ushio

AbstractMicrobial communities play an important role in driving the dynamics of aquatic ecosystems. As difficulties in DNA sequencing faced by microbial ecologists are continuously being reduced, sample collection methods and the choice of DNA extraction protocols are becoming more critical to the outcome of any sequencing study. In the present study, I added a manual, intra-cartridge, bead-beating step in the protocol using a DNeasy® Blood & Tissue kit for DNA extraction from a filter cartridge (Sterivex™ filter cartridge) with-out breaking the cartridge unit (“Beads” method), and compared its performance with those of two other protocols that used the filter cartridge (“NoBeads” method, which was similar to the Beads method but without the bead-beating step, and “PowerSoil” method, which followed the manual of the DNeasy® PowerSoil DNA extraction kit after breaking apart the filter cartridge). Water samples were collected from lake, river, pond and coastal ecosystems in Japan, and DNA was extracted using the three protocols. Then, the V4 region of prokaryotic 16S rRNA genes was amplified. In addition, internal standard DNAs were included in the DNA library preparation process to estimate the number of 16S rRNA gene copies. The DNA library was sequenced using Illumina MiSeq, and sequences were analyzed using the amplicon sequence variant (ASV) approach implemented in the DADA2 pipeline. I found that, 1) the total prokaryotic DNA yields were highest with the Beads method, 2) the number of ASVs (a proxy for species richness) was also highest with the Beads method, 3) overall community compositions were significantly different among the three methods, and 4) the number of method-specific ASVs was highest with the Beads method. These results were generally robust across samples from all aquatic ecosystems examined. In conclusion, the inclusion of a bead-beating step performed inside the filter cartridge increased the DNA yield as well as the number of prokaryotic ASVs detected compared with the other two methods. Performing the bead-beating step inside the filter cartridge causes no dramatic increase in either handling time or processing cost and it can reduce the potential contamination risk from the ambient air and/or other samples. Therefore, this method has the potential to become one of the major choices when one aims to extract aquatic microbial DNAs.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ingo C. Starke ◽  
Wilfried Vahjen ◽  
Robert Pieper ◽  
Jürgen Zentek

In this study, the effect of different DNA extraction procedures and primer sets on pyrosequencing results regarding the composition of bacterial communities in the ileum of piglets was investigated. Ileal chyme from piglets fed a diet containing different amounts of zinc oxide was used to evaluate a pyrosequencing study with barcoded 16S rRNA PCR products. Two DNA extraction methods (bead beating versus silica gel columns) and two primer sets targeting variable regions of bacterial 16S rRNA genes (8f-534r versus 968f-1401r) were considered. The SEED viewer software of the MG-RAST server was used for automated sequence analysis. A total of 5.2×105 sequences were used for analysis after processing for read length (150 bp), minimum sequence occurrence (5), and exclusion of eukaryotic and unclassified/uncultured sequences. DNA extraction procedures and primer sets differed significantly in total sequence yield. The distribution of bacterial order and main bacterial genera was influenced significantly by both parameters. However, this study has shown that the results of pyrosequencing studies using barcoded PCR amplicons of bacterial 16S rRNA genes depend on DNA extraction and primer choice, as well as on the manner of downstream sequence analysis.


1998 ◽  
Vol 64 (9) ◽  
pp. 3464-3472 ◽  
Author(s):  
David C. Gillan ◽  
Arjen G. C. L. Speksnijder ◽  
Gabriel Zwart ◽  
Chantal De Ridder

The shell of the bivalve Montacuta ferruginosa, a symbiont living in the burrow of an echinoid, is covered with a rust-colored biofilm. This biofilm includes different morphotypes of bacteria that are encrusted with a mineral rich in ferric ion and phosphate. The aim of this research was to determine the genetic diversity and phylogenetic affiliation of the biofilm bacteria. Also, the possible roles of the microorganisms in the processes of mineral deposition within the biofilm, as well as their impact on the biology of the bivalve, were assessed by phenotypic inference. The genetic diversity was determined by denaturing gradient gel electrophoresis (DGGE) analysis of short (193-bp) 16S ribosomal DNA PCR products obtained with primers specific for the domain Bacteria. This analysis revealed a diverse consortium; 11 to 25 sequence types were detected depending on the method of DNA extraction used. Individual biofilms analyzed by using the same DNA extraction protocol did not produce identical DGGE profiles. However, different biofilms shared common bands, suggesting that similar bacteria can be found in different biofilms. The phylogenetic affiliations of the sequence types were determined by cloning and sequencing the 16S rRNA genes. Close relatives of the genera Pseudoalteromonas,Colwellia, and Oceanospirillum (members of the γ-Proteobacteria lineage), as well as Flexibacter maritimus (a member of theCytophaga-Flavobacter-Bacteroides lineage), were found in the biofilms. We inferred from the results that some of the biofilm bacteria could play a role in the mineral formation processes.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1416 ◽  
Author(s):  
Rajani Ghaju Shrestha ◽  
Sarmila Tandukar ◽  
Dinesh Bhandari ◽  
Samendra P. Sherchan ◽  
Yasuhiro Tanaka ◽  
...  

This study aims to determine the diversity of pathogenic bacteria in the Bagmati River, Nepal, during a one-year period. A total of 18 river water samples were collected from three sites (n = 6 per site) along the river. Bacterial DNA, which were extracted from the water samples, were analyzed for bacterial 16S rRNA genes by next-generation sequencing for 13 of 18 samples, and by quantitative PCR targeting Arcobacter for all 18 samples. The 16S rRNA sequencing identified an average of 97,412 ± 35,909 sequences/sample, which were then categorized into 28 phyla, 61 classes, and 709 bacterial genera. Eighteen (16%) genera of 111 potential pathogenic bacteria were detected with abundance ratios of >1%; Arcobacter, Acinetobacter, and Prevotella were the dominant genera. The Arcobacter abundance ratios were 28.6% (n = 1), 31.3 ± 15.8% (n = 6), and 31.8 ± 17.2% (n = 6) at the upstream, midstream, and downstream sites, respectively. Arcobacter was detected in 14 (78%) of 18 samples tested, with concentrations ranging from 6.7 to 10.7 log10 copies/100 mL, based on quantitative PCR. Our results demonstrate the poor bacterial quality of the Bagmati River water, suggesting a need for implementing more measures to reduce fecal contamination in the river water.


2012 ◽  
Vol 78 (6) ◽  
pp. 1909-1916 ◽  
Author(s):  
Hodon Ryu ◽  
John F. Griffith ◽  
Izhar U. H. Khan ◽  
Stephen Hill ◽  
Thomas A. Edge ◽  
...  

ABSTRACTTwo novel gull-specific quantitative PCR (qPCR) assays were developed using 16S rRNA gene sequences from gull fecal clone libraries: a SYBR green assay targetingStreptococcusspp. (gull3) and a hydrolysis TaqMan assay targetingCatellicoccus marimammalium(gull4). The objectives of this study were to compare the host specificity of a previousC. marimammaliumqPCR assay (gull2) with that of the new markers and to examine the presence of the three gull markers in environmental water samples from different geographic locations. Most of the gull fecal samples tested (n= 255) generated positive signals with the gull2 and gull4 assays (i.e., >86%), whereas only 28% were positive with gull3. Low prevalence and abundance of tested gull markers (0.6 to 15%) were observed in fecal samples from six nonavian species (n= 180 fecal samples), whereas the assays cross-reacted to some extent (13 to 31%) with other (nongull) avian fecal samples. The gull3 assay was positive against fecal samples from 11 of 15 avian species, including gull. Of the presumed gull-impacted water samples (n= 349), 86%, 59%, and 91% were positive with the gull2, the gull3, and the gull4 assays, respectively. Approximately 5% of 239 non-gull-impacted water samples were positive with the gull2 and the gull4 assays, whereas 21% were positive witg the gull3 assay. While the relatively high occurrence of gull2 and gull4 markers in waters impacted by gull feces suggests that these assays could be used in environmental monitoring studies, the data also suggest that multiple avian-specific assays will be needed to accurately assess the contribution of different avian sources in recreational waters.


FACETS ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 934-951 ◽  
Author(s):  
Melissa Khadra ◽  
Dolors Planas ◽  
Catherine Girard ◽  
Marc Amyot

The phosphonate herbicide glyphosate, which is the active ingredient in the commercial formulation Roundup®, is currently the most globally used herbicide. In aquatic ecosystems, periphytic biofilms, or periphyton, are at the base of food webs and are often the first communities to be in direct contact with runoff. Microcosm experiments were conducted to assess the effects of a pulse exposure of glyphosate on community composition and chlorophyll a concentrations of lake biofilms at different colonization stages (2 months, 1 year, and 20 years). This is the first study that uses such contrasting submersion periods. Biofilms were exposed to either environmental levels of pure analytical grade glyphosate (6 μg/L, 65 μg/L, and 600 μg/L) or to corresponding phosphorus concentrations. Community composition was determined by deep sequencing of the 18S and 16S rRNA genes to target eukaryotes and cyanobacteria, respectively. The results showed that submersion period was the only significant contributor to community structure. However, at the taxon level, the potentially toxic genus Anabaena was found to increase in relative abundance. We also observed that glyphosate releases phosphorus into the surrounding water, but not in a bioavailable form. The results of this study indicate that environmental concentrations of glyphosate do not seem to impact the community composition or metabolism of lake biofilms under pulse event conditions.


2013 ◽  
Vol 773 ◽  
pp. 113-117
Author(s):  
Jiang Tao Qiao ◽  
Rong Bo Guo ◽  
Xiao Shuang Shi ◽  
Yan Ling Qiu

Corn straw biogas slurry always contains humic substances, which poses particular challenges in obtaining PCR-amplifiable DNA for analysis of microbial community. To establish an efficient and reliable DNA extraction method for straw biogas slurry, four approaches: i.e., direct SDS-based method, direct bead-based method, indirect SDS-based method, and indirect bead-based method were evaluated by comparing DNA yield, humic acid contamination, PCR amplifiability, and restriction fragment length polymorphisms (RFLP) of amplified 16S rRNA genes. Direct DNA extraction methods yielded 3-fold higher amounts of DNA than indirect procedures, but its DNA purity was lower. The A260/A230 ratio of DNA from indirect methods (0.8-0.85) were higher than that of DNA from direct methods (0.5-0.6), indicating DNA from direct methods contained high levels of humate contamination. PCR amplification was successful with crude DNA from indirect methods, but not with crude DNA from direct methods. PCR products could also be obtained with purified DNA from direct bead-based method, whereas not direct SDS-based method. Among the four methods, direct bead-based method, indirect SDS-based method and indirect bead-based method could obtain high-quality DNA extracts from corn straw biogas slurry. RFLP analysis further demonstrated the restriction patterns of amplified 16S rRNA genes from three methods were relatively identical microbial diversity.


2015 ◽  
Vol 41 (1) ◽  
pp. 51-58
Author(s):  
Mohammad Shamimul Alam ◽  
Hawa Jahan ◽  
Rowshan Ara Begum ◽  
Reza M Shahjahan

Heteropneustesfossilis, Clariasbatrachus and C. gariepinus are three major catfishes ofecological and economic importance. Identification of these fish species becomes aproblem when the usual external morphological features of the fish are lost or removed,such as in canned fish. Also, newly hatched fish larva is often difficult to identify. PCRsequencingprovides accurate alternative means of identification of individuals at specieslevel. So, 16S rRNA genes of three locally collected catfishes were sequenced after PCRamplification and compared with the same gene sequences available from othergeographical regions. Multiple sequence alignment of the 16S rRNA gene fragments ofthe catfish species has revealed polymorphic sites which can be used to differentiate thesethree species from one another and will provide valuable insight in choosing appropriaterestriction enzymes for PCR-RFLP based identification in future. Asiat. Soc. Bangladesh, Sci. 41(1): 51-58, June 2015


Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 40
Author(s):  
Liang Cui ◽  
Bitong Zhu ◽  
Xiaobo Zhang ◽  
Zhuhua Chan ◽  
Chungui Zhao ◽  
...  

The elevated NH3-N and NO2-N pollution problems in mariculture have raised concerns because they pose threats to animal health and coastal and offshore environments. Supplement of Marichromatium gracile YL28 (YL28) into polluted shrimp rearing water and sediment significantly decreased ammonia and nitrite concentrations, showing that YL28 functioned as a novel safe marine probiotic in the shrimp culture industry. The diversity of aquatic bacteria in the shrimp mariculture ecosystems was studied by sequencing the V4 region of 16S rRNA genes, with respect to additions of YL28 at the low and high concentrations. It was revealed by 16S rRNA sequencing analysis that Proteobacteria, Planctomycete and Bacteroidetes dominated the community (>80% of operational taxonomic units (OTUs)). Up to 41.6% of the predominant bacterial members were placed in the classes Gammaproteobacteria (14%), Deltaproteobacteria (14%), Planctomycetacia (8%) and Alphaproteobacteria (5.6%) while 40% of OTUs belonged to unclassified ones or others, indicating that the considerable bacterial populations were novel in our shrimp mariculture. Bacterial communities were similar between YL28 supplements and control groups (without addition of YL28) revealed by the β-diversity using PCoA, demonstrating that the additions of YL28 did not disturb the microbiota in shrimp mariculture ecosystems. Instead, the addition of YL28 increased the relative abundance of ammonia-oxidizing and denitrifying bacteria. The quantitative PCR analysis further showed that key genes including nifH and amoA involved in nitrification and nitrate or nitrite reduction significantly increased with YL28 supplementation (p < 0.05). The supplement of YL28 decreased the relative abundance of potential pathogen Vibrio. Together, our studies showed that supplement of YL28 improved the water quality by increasing the relative abundance of ammonia-oxidizing and denitrifying bacteria while the microbial community structure persisted in shrimp mariculture ecosystems.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Benjamin J. Callahan ◽  
Dmitry Grinevich ◽  
Siddhartha Thakur ◽  
Michael A. Balamotis ◽  
Tuval Ben Yehezkel

Abstract Background Out of the many pathogenic bacterial species that are known, only a fraction are readily identifiable directly from a complex microbial community using standard next generation DNA sequencing. Long-read sequencing offers the potential to identify a wider range of species and to differentiate between strains within a species, but attaining sufficient accuracy in complex metagenomes remains a challenge. Methods Here, we describe and analytically validate LoopSeq, a commercially available synthetic long-read (SLR) sequencing technology that generates highly accurate long reads from standard short reads. Results LoopSeq reads are sufficiently long and accurate to identify microbial genes and species directly from complex samples. LoopSeq perfectly recovered the full diversity of 16S rRNA genes from known strains in a synthetic microbial community. Full-length LoopSeq reads had a per-base error rate of 0.005%, which exceeds the accuracy reported for other long-read sequencing technologies. 18S-ITS and genomic sequencing of fungal and bacterial isolates confirmed that LoopSeq sequencing maintains that accuracy for reads up to 6 kb in length. LoopSeq full-length 16S rRNA reads could accurately classify organisms down to the species level in rinsate from retail meat samples, and could differentiate strains within species identified by the CDC as potential foodborne pathogens. Conclusions The order-of-magnitude improvement in length and accuracy over standard Illumina amplicon sequencing achieved with LoopSeq enables accurate species-level and strain identification from complex- to low-biomass microbiome samples. The ability to generate accurate and long microbiome sequencing reads using standard short read sequencers will accelerate the building of quality microbial sequence databases and removes a significant hurdle on the path to precision microbial genomics.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yusuke Okazaki ◽  
Shohei Fujinaga ◽  
Michaela M. Salcher ◽  
Cristiana Callieri ◽  
Atsushi Tanaka ◽  
...  

Abstract Background Freshwater ecosystems are inhabited by members of cosmopolitan bacterioplankton lineages despite the disconnected nature of these habitats. The lineages are delineated based on > 97% 16S rRNA gene sequence similarity, but their intra-lineage microdiversity and phylogeography, which are key to understanding the eco-evolutional processes behind their ubiquity, remain unresolved. Here, we applied long-read amplicon sequencing targeting nearly full-length 16S rRNA genes and the adjacent ribosomal internal transcribed spacer sequences to reveal the intra-lineage diversities of pelagic bacterioplankton assemblages in 11 deep freshwater lakes in Japan and Europe. Results Our single nucleotide-resolved analysis, which was validated using shotgun metagenomic sequencing, uncovered 7–101 amplicon sequence variants for each of the 11 predominant bacterial lineages and demonstrated sympatric, allopatric, and temporal microdiversities that could not be resolved through conventional approaches. Clusters of samples with similar intra-lineage population compositions were identified, which consistently supported genetic isolation between Japan and Europe. At a regional scale (up to hundreds of kilometers), dispersal between lakes was unlikely to be a limiting factor, and environmental factors or genetic drift were potential determinants of population composition. The extent of microdiversification varied among lineages, suggesting that highly diversified lineages (e.g., Iluma-A2 and acI-A1) achieve their ubiquity by containing a consortium of genotypes specific to each habitat, while less diversified lineages (e.g., CL500-11) may be ubiquitous due to a small number of widespread genotypes. The lowest extent of intra-lineage diversification was observed among the dominant hypolimnion-specific lineage (CL500-11), suggesting that their dispersal among lakes is not limited despite the hypolimnion being a more isolated habitat than the epilimnion. Conclusions Our novel approach complemented the limited resolution of short-read amplicon sequencing and limited sensitivity of the metagenome assembly-based approach, and highlighted the complex ecological processes underlying the ubiquity of freshwater bacterioplankton lineages. To fully exploit the performance of the method, its relatively low read throughput is the major bottleneck to be overcome in the future.


Sign in / Sign up

Export Citation Format

Share Document