scholarly journals Vitamin D3 regulates estrogen’s action and affects mammary epithelial organization in 3D cultures

2018 ◽  
Author(s):  
Nafis Hasan ◽  
Carlos Sonnenschein ◽  
Ana M. Soto

AbstractVitamin D3 (vitD3) and its active metabolite, calcitriol (1,25-(OH)2D3), affect multiple tissue types by interacting with the vitamin D receptor (VDR). Although vitD3 deficiency has been correlated with increased incidence of breast cancer and less favorable outcomes across ethnic groups and latitudes, randomized human clinical trials have yet to provide conclusive evidence on the efficacy of vitD3 in treating and/or preventing breast cancer. When considering that carcinogenesis is “development gone awry”, it becomes imperative to understand the role of vitD3 during breast development. Mammary gland development in VDR KO mice is altered by increased ductal elongation and lateral branching during puberty, precocious and increased alveologenesis at pregnancy and delayed post-lactational involution. These developmental processes are largely influenced by mammotropic hormones, i.e., ductal elongation by estrogen, branching by progesterone and alveologenesis by prolactin. However, research on vitD3’s effects on mammary gland morphogenesis focused on cell proliferation and apoptosis in 2D culture models and utilized supra-physiological doses of vitD3, conditions that spare the microenvironment in which morphogenesis takes place. Here, using two 3D culture models, we investigated the role of vitD3 in mammary epithelial morphogenesis. We found that vitD3 interferes with estrogen’s actions on T47D human breast cancer cells in 3D differently at different doses, and recapitulates what is observed in vivo. Also, vitD3 can act autonomously and affect the organization of MCF10A cells in 3D collagen matrix by influencing collagen fiber organization. Thus, we uncovered how vitD3 modulates mammary tissue organization independent of its already known effects on cell proliferation.

2011 ◽  
Vol 14 (3) ◽  
pp. 433-442 ◽  
Author(s):  
M. Kozłowski ◽  
J. Wilczak ◽  
T. Motyl ◽  
M. Gajewska

Role of extracellular matrix and prolactin in functional differentiation of bovine BME-UV1 mammary epithelial cells Interactions between extracellular matrix (ECM) and epithelial cells are necessary for proper organisation and function of the epithelium. In the present study we show that bovine mammary epithelial cell line BME-UV1 cultured on ECM components, commercially available as Matrigel™, constitutes a good model for studying mechanisms controlling functional differentiation of the bovine mammary gland. In contact with Matrigel BME-UV1 cells induce apicobasal polarity, and within 16 days form three dimensional (3D) acinar structures with a centrally localized hollow lumen, which structurally resemble mammary alveoli present in the functionally active mammary gland. We have shown that the 3D culture system enables a high expression and proper localisation of integrin receptors and tight junction proteins in BME-UV1 cells to be induced. This effect was not obtained in cells grown in the classical 2D culture system on plastic. Moreover, ECM highly stimulated the synthesis of one of the major milk proteins, β-casein, even in the absence of prolactin. Our results show that contact with ECM plays an important role in the lactogenic activity of bovine MECs, however, prolactin is necessary for the efficient secretion of milk proteins.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1018
Author(s):  
Manoj Kumar Jena

Study on the role of microRNAs (miRs) as regulators of gene expression through posttranscriptional gene silencing is currently gaining much interest,due to their wide involvement in different physiological processes. Understanding mammary gland development, lactation, and neoplasia in relation to miRs is essential. miR expression profiling of the mammary gland from different species in various developmental stages shows their role as critical regulators of development. miRs such as miR-126, miR-150, and miR-145 have been shown to be involved in lipid metabolism during lactation. In addition, lactogenic hormones influence miR expression as evidenced by overexpression of miR-148a in cow mammary epithelial cells, leading to enhanced lactation. Similarly, the miR-29 family modulates lactation-related gene expression by regulating DNA methylation of their promoters. Besides their role in development, lactation and involution, miRs are responsible for breast cancer development. Perturbed estrogen (E2) signaling is one of the major causes of breast cancer. Increased E2 levels cause altered expression of ERα, and ERα-miR cross-talk promotes tumour progression. miRs, such as miR-206, miR-34a, miR-17-5p, and miR-125 a/b are found to be tumour suppressors; whereas miR-21, miR-10B, and miR-155 are oncogenes. Oncogenic miRs like miR-21, miR-221, and miR-210 are overexpressed in triple negative breast cancer cases which can be diagnostic biomarker for this subtype of cancer.  This review focuses on the recent findings concerning the role of miRs in developmental stages of the mammary gland (mainly lactation and involution stages) and their involvement in breast cancer progression. Further studies in this area will help us to understand the molecular details of mammary gland biology, as well as miRs that could be therapeutic targets of breast cancer.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1018 ◽  
Author(s):  
Manoj Kumar Jena

Study on the role of microRNAs (miRs) as regulators of gene expression through posttranscriptional gene silencing is currently gaining much interest,due to their wide involvement in different physiological processes. Understanding mammary gland development, lactation, and neoplasia in relation to miRs is essential. miR expression profiling of the mammary gland from different species in various developmental stages shows their role as critical regulators of development. miRs such as miR-126, miR-150, and miR-145 have been shown to be involved in lipid metabolism during lactation. In addition, lactogenic hormones influence miR expression as evidenced by overexpression of miR-148a in cow mammary epithelial cells, leading to enhanced lactation. Similarly, the miR-29 family modulates lactation-related gene expression by regulating DNA methylation of their promoters. Besides their role in development, lactation and involution, miRs are responsible for breast cancer development. Perturbed estrogen (E2) signaling is one of the major causes of breast cancer. Increased E2 levels cause altered expression of ERα, and ERα-miR cross-talk promotes tumour progression. miRs, such as miR-206, miR-34a, miR-17-5p, and miR-125 a/b are found to be tumour suppressors; whereas miR-21, miR-10B, and miR-155 are oncogenes.Studies using an ACI rat model showed similar findings of miR dysregulation due to excess E2, and a natural phenol antioxidant ellagic acid showed therapeutic properties by reversing the miR dysregulation. This review focuses on the recent findings concerning the role of miRs in developmental stages of the mammary gland (mainly lactation and involution stages) and their involvement in breast cancer progression. Further studies in this area will help us understand the molecular details of mammary gland biology,as well as miRs that could be therapeutic targets of breast cancer.


Author(s):  
Georgia Colleluori ◽  
Jessica Perugini ◽  
Giorgio Barbatelli ◽  
Saverio Cinti

AbstractThe mammary gland (MG) is an exocrine gland present in female mammals responsible for the production and secretion of milk during the process of lactation. It is mainly composed by epithelial cells and adipocytes. Among the features that make the MG unique there are 1) its highly plastic properties displayed during pregnancy, lactation and involution (all steps belonging to the lactation cycle) and 2) its requirement to grow in close association with adipocytes which are absolutely necessary to ensure MG’s proper development at puberty and remodeling during the lactation cycle. Although MG adipocytes play such a critical role for the gland development, most of the studies have focused on its epithelial component only, leaving the role of the neighboring adipocytes largely unexplored. In this review we aim to describe evidences regarding MG’s adipocytes role and properties in physiologic conditions (gland development and lactation cycle), obesity and breast cancer, emphasizing the existing gaps in the literature which deserve further investigation.


2021 ◽  
Vol 13 (1) ◽  
pp. 17-29
Author(s):  
Emann M Rabie ◽  
Sherry X Zhang ◽  
Andreas P Kourouklis ◽  
A Nihan Kilinc ◽  
Allison K Simi ◽  
...  

Abstract Metastasis, the leading cause of mortality in cancer patients, depends upon the ability of cancer cells to invade into the extracellular matrix that surrounds the primary tumor and to escape into the vasculature. To investigate the features of the microenvironment that regulate invasion and escape, we generated solid microtumors of MDA-MB-231 human breast carcinoma cells within gels of type I collagen. The microtumors were formed at defined distances adjacent to an empty cavity, which served as an artificial vessel into which the constituent tumor cells could escape. To define the relative contributions of matrix degradation and cell proliferation on invasion and escape, we used pharmacological approaches to block the activity of matrix metalloproteinases (MMPs) or to arrest the cell cycle. We found that blocking MMP activity prevents both invasion and escape of the breast cancer cells. Surprisingly, blocking proliferation increases the rate of invasion but has no effect on that of escape. We found that arresting the cell cycle increases the expression of MMPs, consistent with the increased rate of invasion. To gain additional insight into the role of cell proliferation in the invasion process, we generated microtumors from cells that express the fluorescent ubiquitination-based cell cycle indicator. We found that the cells that initiate invasions are preferentially quiescent, whereas cell proliferation is associated with the extension of invasions. These data suggest that matrix degradation and cell proliferation are coupled during the invasion and escape of human breast cancer cells and highlight the critical role of matrix proteolysis in governing tumor phenotype.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiantian Tang ◽  
Guiying Wang ◽  
Sihua Liu ◽  
Zhaoxue Zhang ◽  
Chen Liu ◽  
...  

AbstractThe role of organic anion transporting polypeptide 1B3 (SLCO1B3) in breast cancer is still controversial. The clinical immunohistochemical results showed that a greater proportion of patients with negative lymph nodes, AJCC stage I, and histological grade 1 (P < 0.05) was positively correlated with stronger expression of SLCO1B3, and DFS and OS were also increased significantly in these patients (P = 0.041, P = 0.001). Further subgroup analysis showed that DFS and OS were significantly enhanced with the increased expression of SLCO1B3 in the ER positive subgroup. The cellular function assay showed that the ability of cell proliferation, migration and invasion was significantly enhanced after knockdown of SLCO1B3 expression in breast cancer cell lines. In contrast, the ability of cell proliferation, migration and invasion was significantly reduced after overexpress the SLCO1B3 in breast cancer cell lines (P < 0.05). Overexpression or knockdown of SLCO1B3 had no effect on the apoptotic ability of breast cancer cells. High level of SLCO1B3 expression can inhibit the proliferation, invasion and migration of breast cancer cells, leading to better prognosis of patients. The role of SLCO1B3 in breast cancer may be related to estrogen. SLCO1B3 will become a potential biomarker for breast cancer diagnosis and prognosis assessment.


2002 ◽  
Vol 83 (1-5) ◽  
pp. 85-92 ◽  
Author(s):  
JoEllen Welsh ◽  
Jennifer A. Wietzke ◽  
Glendon M. Zinser ◽  
Sarah Smyczek ◽  
Saara Romu ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1204
Author(s):  
Moumita Chakraborty ◽  
Michal Hershfinkel

Zinc (Zn2+) plays an essential role in epithelial physiology. Among its many effects, most prominent is its action to accelerate cell proliferation, thereby modulating wound healing. It also mediates affects in the gastrointestinal system, in the testes, and in secretory organs, including the pancreas, salivary, and prostate glands. On the cellular level, Zn2+ is involved in protein folding, DNA, and RNA synthesis, and in the function of numerous enzymes. In the mammary gland, Zn2+ accumulation in maternal milk is essential for supporting infant growth during the neonatal period. Importantly, Zn2+ signaling also has direct roles in controlling mammary gland development or, alternatively, involution. During breast cancer progression, accumulation or redistribution of Zn2+ occurs in the mammary gland, with aberrant Zn2+ signaling observed in the malignant cells. Here, we review the current understanding of the role of in Zn2+ the mammary gland, and the proteins controlling cellular Zn2+ homeostasis and signaling, including Zn2+ transporters and the Gq-coupled Zn2+ sensing receptor, ZnR/GPR39. Significant advances in our understanding of Zn2+ signaling in the normal mammary gland as well as in the context of breast cancer provides new avenues for identification of specific targets for breast cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document