scholarly journals Large-scale neuron cell classification of single-channel and multi-channel extracellularrecordings in the anterior lateral motor cortex

2018 ◽  
Author(s):  
Rohan Parikh

AbstractIdentification of neuron cell type helps us connect neural circuitry and behavior; greater specificity in cell type and subtype classification provides a clearer picture of specific relationships between the brain and behavior. With the advent of high-density probes, large-scale neuron classification is needed, as typical extracellular recordings are identity-blind to the neurons they record. Current methods for identification of neurons include optogenetic tagging and intracellular recordings, but are limited in that they are expensive, time-consuming, and have a limited scope. Therefore, a more automated, real-time method is needed for large-scale neuron identification. Data from two recordings was incorporated into this research; the single-channel recording included data from three neuron types in the motor cortex: FS, IT, and PT neurons. The multi-channel recording contained data from two neuron subtypes also in the motor cortex: PT_L and PT_U neurons. This allowed for an examination of both general neuron classification and more specific subtype classification, which was done via artificial neural networks (ANNs) and machine learning (ML) algorithms. For the single-channel neuron classification, the ANNs achieved 91% accuracy, while the ML algorithms achieved 98% accuracy, using the raw electrical waveform. The multi-channel classification, which was significantly more difficult due to the similarity between the neuron types, yielded an ineffective ANN, reaching 68% accuracy, while the ML algorithms reached 81% using 8 calculated features from the waveform. Thus, to distinguish between different neuron cell types and subtypes in the motor cortex, both ANNs and specific ML algorithms can facilitate rapid and accurate near real-time large-scale classification.

Nature ◽  
2021 ◽  
Vol 598 (7879) ◽  
pp. 111-119 ◽  
Author(s):  
Trygve E. Bakken ◽  
Nikolas L. Jorstad ◽  
Qiwen Hu ◽  
Blue B. Lake ◽  
Wei Tian ◽  
...  

AbstractThe primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch–seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.


Author(s):  
◽  
Ricky S. Adkins ◽  
Andrew I. Aldridge ◽  
Shona Allen ◽  
Seth A. Ament ◽  
...  

ABSTRACTWe report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.


2018 ◽  
Author(s):  
Nikos Konstantinides ◽  
Katarina Kapuralin ◽  
Chaimaa Fadil ◽  
Luendreo Barboza ◽  
Rahul Satija ◽  
...  

SummaryTranscription factors regulate the molecular, morphological, and physiological characters of neurons and generate their impressive cell type diversity. To gain insight into general principles that govern how transcription factors regulate cell type diversity, we used large-scale single-cell mRNA sequencing to characterize the extensive cellular diversity in the Drosophila optic lobes. We sequenced 55,000 single optic lobe neurons and glia and assigned them to 52 clusters of transcriptionally distinct single cells. We validated the clustering and annotated many of the clusters using RNA sequencing of characterized FACS-sorted single cell types, as well as marker genes specific to given clusters. To identify transcription factors responsible for inducing specific terminal differentiation features, we used machine-learning to generate a ‘random forest’ model. The predictive power of the model was confirmed by showing that two transcription factors expressed specifically in cholinergic (apterous) and glutamatergic (traffic-jam) neurons are necessary for the expression of ChAT and VGlut in many, but not all, cholinergic or glutamatergic neurons, respectively. We used a transcriptome-wide approach to show that the same terminal characters, including but not restricted to neurotransmitter identity, can be regulated by different transcription factors in different cell types, arguing for extensive phenotypic convergence. Our data provide a deep understanding of the developmental and functional specification of a complex brain structure.


2015 ◽  
Author(s):  
Daria Zhernakova ◽  
Patrick Deelen ◽  
Martijn Vermaat ◽  
Maarten van Iterson ◽  
Michiel van Galen ◽  
...  

Genetic risk factors often localize in non-coding regions of the genome with unknown effects on disease etiology. Expression quantitative trait loci (eQTLs) help to explain the regulatory mechanisms underlying the association of genetic risk factors with disease. More mechanistic insights can be derived from knowledge of the context, such as cell type or the activity of signaling pathways, influencing the nature and strength of eQTLs. Here, we generated peripheral blood RNA-seq data from 2,116 unrelated Dutch individuals and systematically identified these context-dependent eQTLs using a hypothesis-free strategy that does not require prior knowledge on the identity of the modifiers. Out of the 23,060 significant cis-regulated genes (false discovery rate ≤ 0.05), 2,743 genes (12%) show context-dependent eQTL effects. The majority of those were influenced by cell type composition, revealing eQTLs that are particularly strong in cell types such as CD4+ T-cells, erythrocytes, and even lowly abundant eosinophils. A set of 145 cis-eQTLs were influenced by the activity of the type I interferon signaling pathway and we identified several cis-eQTLs that are modulated by specific transcription factors that bind to the eQTL SNPs. This demonstrates that large-scale eQTL studies in unchallenged individuals can complement perturbation experiments to gain better insight in regulatory networks and their stimuli.


2004 ◽  
Vol 14 (02) ◽  
pp. 679-692 ◽  
Author(s):  
VIKTOR K. JIRSA

We discuss a notion of information processing in brain and behavioral dynamics, in particular the processing of meaningful information, which is testable by means of an experimental coordination and transition paradigm. Two hypotheses on the existence and persistence of mappings between the dynamics of behavioral and brain signals are formulated. A mathematical foundation for the first hypothesis is suggested by means of Volterra integral expansions and by means of excitable systems. Brain signals are captured as cortical currents, as well as the resulting scalp topographies, such as electroencephalograms (EEG) and magnetoencephalograms (MEG). Experimental evidence is provided to support the hypothesis on the existence of such spatiotemporal mappings between behavioral and brain signals.


2017 ◽  
Author(s):  
Aparna Bhaduri ◽  
Tomasz J. Nowakowski ◽  
Alex A. Pollen ◽  
Arnold R. Kriegstein

AbstractHigh throughput methods for profiling the transcriptomes of single cells have recently emerged as transformative approaches for large-scale population surveys of cellular diversity in heterogeneous primary tissues. Efficient generation of such an atlas will depend on sufficient sampling of the diverse cell types while remaining cost-effective to enable a comprehensive examination of organs, developmental stages, and individuals. To examine the relationship between cell number and transcriptional heterogeneity in the context of unbiased cell type classification, we explicitly explored the population structure of a publically available 1.3 million cell dataset from the E18.5 mouse brain. We propose a computational framework for inferring the saturation point of cluster discovery in a single cell mRNA-seq experiment, centered around cluster preservation in downsampled datasets. In addition, we introduce a “complexity index”, which characterizes the heterogeneity of cells in a given dataset. Using Cajal-Retzius cells as an example of a limited complexity dataset, we explored whether biological distinctions relate to technical clustering. Surprisingly, we found that clustering distinctions carrying biologically interpretable meaning are achieved with far fewer cells (20,000). Together, these findings suggest that most of the biologically interpretable insights from the 1.3 million cells can be recapitulated by analyzing 50,000 randomly selected cells, indicating that instead of profiling few individuals at high “cellular coverage”, the much anticipated cell atlasing studies may instead benefit from profiling more individuals, or many time points at lower cellular coverage.Recent efforts seek to create a comprehensive cell atlas of the human body1,2 Current technology, however, makes it precipitously expensive to perform analysis of every cell. Therefore, designing effective sampling strategies be critical to generate a working atlas in an efficient, cost-effective, and streamlined manner. The advent of single cell and single nucleus mRNA sequencing (RNAseq) in droplet format3,4 now enables large scale sampling of cells from any tissue, and a recently released publicly available dataset of 1.3 million single cells from the E18.5 mouse brain generated with the 10X Chromium5 provides an opportunity to explore the relationship between population structure and the number of sampled cells necessary to reveal the underlying diversity of cell types. Here, we present a framework for how researchers can evaluate whether a dataset has reached saturation, and we estimate how many cells would be required to generate an atlas of the sample analyzed here. This framework can be applied to any organ or cell type specific atlas for any organism.


2017 ◽  
Author(s):  
Can Wang ◽  
Shihua Zhang

AbstractHistone modifications have been widely elucidated to play vital roles in gene regulation and cell identity. The Roadmap Epigenomics Consortium generated a reference catalogue of several key histone modifications across >100s of human cell types and tissues. Decoding these epigenomes into functional regulatory elements is a challenging task in computational biology. To this end, we adopted a differential chromatin modification analysis framework to comprehensively determine and characterize cell type-specific regulatory elements (CSREs) and their histone modification codes in the human epigenomes of five histone modifications across 127 tissues or cell types. The CSREs show significant relevance with cell type-specific biological functions and diseases and cell identity. Clustering of CSREs with their specificity signals reveals diverse histone codes, demonstrating the diversity of functional roles of CSREs within the same cell or tissue. Last but not least, dynamics of CSREs from close cell types or tissues can give a detailed view of developmental processes such as normal tissue development and cancer occurrence.


2021 ◽  
Author(s):  
Antonino Zito ◽  
Amy L Roberts ◽  
Alessia Visconti ◽  
Niccolo' Rossi ◽  
Rosa Andres-Ejarque ◽  
...  

X-chromosome inactivation (XCI) silences one X-chromosome in female cells to balance sex-differences in X-dosage. A subset of X-linked genes escape XCI, but the extent to which this phenomenon occurs and how it varies across tissues and in a population is as yet unclear. In order to characterize the incidence and variability of escape across individuals and tissues, we conducted a large scale transcriptomic study of XCI escape in adipose, skin, lymphoblastoid cell lines (LCLs) and immune cells in 248 twins drawn from a healthy population cohort. We identify 159 X-linked genes with detectable escape, of which 54 genes, including 19 lncRNAs, were not previously known to escape XCI. Across tissues we find a range of tissue-specificity, with 11% of genes escaping XCI constitutively across tissues and 24% demonstrating tissue-restricted escape, including genes with cell-type specific escape between immune cell types (B, T-CD4+, T-CD8+ and NK cells) of the same individual. Escape genes interact with autosomal-encoded proteins and are involved in varied biological processes such as gene regulation. We find substantial variability in escape between individuals. 49% of genes show inter-individual variability in escape, indicating escape from XCI is an under-appreciated source of gene expression differences. We utilized twin models to investigate the role of genetics in variable escape. Overall, monozygotic (MZ) twin pairs share more similar escape than dizygotic twin pairs, indicating that genetic factors underlie differences in escape across individuals. However, we also identify instances of discordant XCI within MZ co-twin pairs, suggesting that environmental factors also influence escape. Thus, XCI escape may be shaped by an interplay of genetic factors with tissue- and cell type-specificity, and environment. These results illuminate an intricate phenotype whose characterization aids understanding the basis of variable trait expressivity in females.


2019 ◽  
Author(s):  
Kelly M. Bakulski ◽  
John F. Dou ◽  
Robert C. Thompson ◽  
Christopher Lee ◽  
Lauren Y. Middleton ◽  
...  

AbstractBackgroundLead (Pb) exposure is ubiquitous and has permanent developmental effects on childhood intelligence and behavior and adulthood risk of dementia. The hippocampus is a key brain region involved in learning and memory, and its cellular composition is highly heterogeneous. Pb acts on the hippocampus by altering gene expression, but the cell type-specific responses are unknown.ObjectiveExamine the effects of perinatal Pb treatment on adult hippocampus gene expression, at the level of individual cells, in mice.MethodsIn mice perinatally exposed to control water (n=4) or a human physiologically-relevant level (32 ppm in maternal drinking water) of Pb (n=4), two weeks prior to mating through weaning, we tested for gene expression and cellular differences in the hippocampus at 5-months of age. Analysis was performed using single cell RNA-sequencing of 5,258 cells from the hippocampus by 10x Genomics Chromium to 1) test for gene expression differences averaged across all cells by treatment; 2) compare cell cluster composition by treatment; and 3) test for gene expression and pathway differences within cell clusters by treatment.ResultsGene expression patterns revealed 12 cell clusters in the hippocampus, mapping to major expected cell types (e.g. microglia, astrocytes, neurons, oligodendrocytes). Perinatal Pb treatment was associated with 12.4% more oligodendrocytes (P=4.4×10−21) in adult mice. Across all cells, differential gene expression analysis by Pb treatment revealed cluster marker genes. Within cell clusters, differential gene expression with Pb treatment (q<0.05) was observed in endothelial, microglial, pericyte, and astrocyte cells. Pathways up-regulated with Pb treatment were protein folding in microglia (P=3.4×10−9) and stress response in oligodendrocytes (P=3.2×10−5).ConclusionBulk tissue analysis may be confounded by changes in cell type composition and may obscure effects within vulnerable cell types. This study serves as a biological reference for future single cell studies of toxicant or neuronal complications, to ultimately characterize the molecular basis by which Pb influences cognition and behavior.


2020 ◽  
Author(s):  
Benjamin D. Harris ◽  
Megan Crow ◽  
Stephan Fischer ◽  
Jesse Gillis

ABSTRACTSingle-cell RNA-sequencing (scRNAseq) data can reveal co-regulatory relationships between genes that may be hidden in bulk RNAseq due to cell type confounding. Using the primary motor cortex data from the Brain Initiative Cell Census Network (BICCN), we study cell type specific co-expression across 500,000 cells. Surprisingly, we find that the same gene-gene relationships that differentiate cell types are evident at finer and broader scales, suggesting a consistent multiscale regulatory landscape.


Sign in / Sign up

Export Citation Format

Share Document