scholarly journals Comprehensive and quantitative analysis of white and brown adipose tissue by shotgun lipidomics

2018 ◽  
Author(s):  
Michal Grzybek ◽  
Alessandra Palladini ◽  
Vasileia I Alexaki ◽  
Michal A. Surma ◽  
Kai Simons ◽  
...  

AbstractShotgun lipidomics enables an extensive analysis of lipids from tissues and fluids. Each specimen requires appropriate extraction and processing procedures to ensure good coverage and reproducible quantification of the lipidome. Adipose tissue (AT) has become a research focus with regard to its involvement in obesity-related pathologies. However, the quantification of the AT lipidome is particularly challenging due to the predominance of triacylglycerides, which elicit high ion suppression of the remaining lipid classes. We present a new and validated method for shotgun lipidomics of AT, which tailors the lipid extraction procedure to the target specimen and features high reproducibility with a linear dynamic range of at least 4 orders of magnitude for all lipid classes. Utilizing this method, we observed tissue-specific and diet-related differences in three AT types (brown, gonadal, inguinal subcutaneous) from lean and obese mice. Brown AT exhibited a distinct lipidomic profile with the greatest lipid class diversity and responded to high-fat diet by altering its lipid composition, which shifted towards that of white AT. Moreover, diet-induced obesity promoted an overall remodelling of the lipidome, where all three AT types featured a significant increase in longer and more unsaturated triacylglyceride and phospholipid species.The here presented method facilitates reproducible systematic lipidomic profiling of AT and could be integrated with further –omics approaches used in (pre-)clinical research, in order to advance the understanding of the molecular metabolic dynamics involved in the pathogenesis of obesity-associated disorders.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Enrique Calvo ◽  
Noelia Keiran ◽  
Catalina Núñez-Roa ◽  
Elsa Maymó-Masip ◽  
Miriam Ejarque ◽  
...  

AbstractAdipose-derived mesenchymal stem cells (ASCs) are a promising option for the treatment of obesity and its metabolic co-morbidities. Despite the recent identification of brown adipose tissue (BAT) as a potential target in the management of obesity, the use of ASCs isolated from BAT as a therapy for patients with obesity has not yet been explored. Metabolic activation of BAT has been shown to have not only thermogenic effects, but it also triggers the secretion of factors that confer protection against obesity. Herein, we isolated and characterized ASCs from the visceral adipose tissue surrounding a pheochromocytoma (IB-hASCs), a model of inducible BAT in humans. We then compared the anti-obesity properties of IB-hASCs and human ASCs isolated from visceral white adipose tissue (W-hASCs) in a murine model of diet-induced obesity. We found that both ASC therapies mitigated the metabolic abnormalities of obesity to a similar extent, including reducing weight gain and improving glucose tolerance. However, infusion of IB-hASCs was superior to W-hASCs in suppressing lipogenic and inflammatory markers, as well as preserving insulin secretion. Our findings provide evidence for the metabolic benefits of visceral ASC infusion and support further studies on IB-hASCs as a therapeutic option for obesity-related comorbidities.


2018 ◽  
Vol 115 (30) ◽  
pp. 7819-7824 ◽  
Author(s):  
Yuliya Skorobogatko ◽  
Morgan Dragan ◽  
Claudia Cordon ◽  
Shannon M. Reilly ◽  
Chao-Wei Hung ◽  
...  

Insulin increases glucose uptake into adipose tissue and muscle by increasing trafficking of the glucose transporter Glut4. In cultured adipocytes, the exocytosis of Glut4 relies on activation of the small G protein RalA by insulin, via inhibition of its GTPase activating complex RalGAP. Here, we evaluate the role of RalA in glucose uptake in vivo with specific chemical inhibitors and by generation of mice with adipocyte-specific knockout of RalGAPB. RalA was profoundly activated in brown adipose tissue after feeding, and its inhibition prevented Glut4 exocytosis. RalGAPB knockout mice with diet-induced obesity were protected from the development of metabolic disease due to increased glucose uptake into brown fat. Thus, RalA plays a crucial role in glucose transport in adipose tissue in vivo.


2020 ◽  
Vol 117 (26) ◽  
pp. 15055-15065 ◽  
Author(s):  
Mengxi Jiang ◽  
Tony E. Chavarria ◽  
Bingbing Yuan ◽  
Harvey F. Lodish ◽  
Nai-Jia Huang

Phosphocholine phosphatase-1 (PHOSPHO1) is a phosphocholine phosphatase that catalyzes the hydrolysis of phosphocholine (PC) to choline. Here we demonstrate that the PHOSPHO1 transcript is highly enriched in mature brown adipose tissue (BAT) and is further induced by cold and isoproterenol treatments of BAT and primary brown adipocytes. In defining the functional relevance of PHOPSPHO1 in BAT thermogenesis and energy metabolism, we show that PHOSPHO1 knockout mice are cold-tolerant, with higher expression of thermogenic genes in BAT, and are protected from high-fat diet-induced obesity and development of insulin resistance. Treatment of mice with the PHOSPHO1 substrate phosphocholine is sufficient to induce cold tolerance, thermogenic gene expression, and allied metabolic benefits. Our results reveal a role of PHOSPHO1 as a negative regulator of BAT thermogenesis, and inhibition of PHOSPHO1 or enhancement of phosphocholine represent innovative approaches to manage the metabolic syndrome.


Author(s):  
Gabriela S. Perez ◽  
Gabriele D.S. Cordeiro ◽  
Lucimeire S. Santos ◽  
Djane D.A. Espírito-Santo ◽  
Gilson T. Boaventura ◽  
...  

Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1494
Author(s):  
Garam Yang ◽  
Eunjeong Hong ◽  
Sejong Oh ◽  
Eungseok Kim

In this study, the role of non-viable Lactobacillus johnsonii JNU3402 (NV-LJ3402) in diet-induced obesity was investigated in mice fed a high-fat diet (HFD). To determine whether NV-LJ3402 exhibits a protective effect against diet-induced obesity, 7-week-old male C57BL/6J mice were fed a normal diet, an HFD, or an HFD with NV-LJ3402 for 14 weeks. NV-LJ3402 administration was associated with a significant reduction in body weight gain and in liver, epididymal, and inguinal white adipose tissue (WAT) and brown adipose tissue weight in HFD-fed mice. Concomitantly, NV-LJ3402 administration to HFD-fed mice also decreased the triglyceride levels in the plasma and metabolic tissues and slightly improved insulin resistance. Furthermore, NV-LJ3402 enhanced gene programming for energy dissipation in the WATs of HFD-fed mice as well as in 3T3-L1 adipocytes with increased peroxisome proliferator-activated receptor-γ (PPARγ) transcriptional activity, suggesting that the PPARγ pathway plays a key role in mediating the anti-obesity effect of NV-LJ3402 in HFD-fed mice. Furthermore, NV-LJ3402 administration in HFD-fed mice enhanced mitochondrial levels and function in WATs and also increased the body temperature upon cold exposure. Together, these results suggest that NV-LJ3402 could be safely used to develop dairy products that ameliorate diet-induced obesity and hyperlipidemia.


2000 ◽  
Vol 279 (2) ◽  
pp. E356-E365 ◽  
Author(s):  
Patricia M. Watson ◽  
Scott P. Commins ◽  
Rudolph J. Beiler ◽  
Heather C. Hatcher ◽  
Thomas W. Gettys

Obesity-resistant (A/J) and obesity-prone (C57BL/6J) mice were weaned onto low-fat (LF) or high-fat (HF) diets and studied after 2, 10, and 16 wk. Despite consuming the same amount of food, A/J mice on the HF diet deposited less carcass lipid and gained less weight than C57BL/6J mice over the course of the study. Leptin mRNA was increased in white adipose tissue (WAT) in both strains on the HF diet but to significantly higher levels in A/J compared with C57BL/6J mice. Uncoupling protein 1 (UCP1) and UCP2 mRNA were induced by the HF diet in brown adipose tissue (BAT) and WAT of A/J mice, respectively, but not in C57BL/6J mice. UCP1 mRNA was also significantly higher in retroperitoneal WAT of A/J compared with C57BL/6J mice. The ability of A/J mice to resist diet-induced obesity is associated with a strain-specific increase in leptin, UCP1, and UCP2 expression in adipose tissue. The findings indicate that the HF diet does not compromise leptin-dependent regulation of adipocyte gene expression in A/J mice and suggest that maintenance of leptin responsiveness confers resistance to diet-induced obesity.


2011 ◽  
Vol 107 (2) ◽  
pp. 170-178 ◽  
Author(s):  
David Pajuelo ◽  
Helena Quesada ◽  
Sabina Díaz ◽  
Anabel Fernández-Iglesias ◽  
Anna Arola-Arnal ◽  
...  

The present study aims to determine the effects of grape seed proanthocyanidin extract (GSPE) on brown adipose tissue (BAT) mitochondrial function in a state of obesity induced by diet. Wistar male rats were fed with a cafeteria diet (Cd) for 4 months; during the last 21 d, two groups were treated with doses of 25 and 50 mg GSPE/kg body weight. In the BAT, enzymatic activities of citrate synthase, cytochrome c oxidase (COX) and ATPase were determined and gene expression was analysed by real-time PCR. The mitochondrial function of BAT was determined in fresh mitochondria by high-resolution respirometry using both pyruvate and carnitine–palmitoyl-CoA as substrates. The results show that the Cd causes an important decrease in the gene expression of sirtuin 1, nuclear respiratory factor 1, isocitrate dehydrogenase 3γ and COX5α and, what is more telling, decreases the levels of mitochondrial respiration both with pyruvate and canitine–palmitoyl-CoA. Most of these parameters, which are indicative of mitochondrial dysfunction due to diet-induced obesity, are improved by chronic supplementation of GSPE. The beneficial effects caused by the administration of GSPE are exhibited as a protection against weight gain, in spite of the Cd the rats were fed. These data indicate that chronic consumption of a moderate dose of GSPE can correct an energy imbalance in a situation of diet-induced obesity, thereby improving the mitochondrial function and thermogenic capacity of the BAT.


2018 ◽  
Vol 314 (2) ◽  
pp. E131-E138 ◽  
Author(s):  
Hidechika Morimoto ◽  
Jun Mori ◽  
Hisakazu Nakajima ◽  
Yasuhiro Kawabe ◽  
Yusuke Tsuma ◽  
...  

The renin-angiotensin system is a key regulator of metabolism with beneficial effects of the angiotensin 1–7 (Ang 1–7) peptide. We hypothesized that the antiobesity effect of Ang 1–7 was related to the stimulation of brown adipose tissue (BAT). We administered Ang 1–7 (0.54 mg kg−1 day−1) for 28 days via implanted micro-osmotic pumps to mice with high-fat diet (HFD)-induced obesity. Ang 1–7 treatment reduced body weight, upregulated thermogenesis, and ameliorated impaired glucose homeostasis without affecting food consumption. Furthermore, Ang 1–7 treatment enlarged BAT and the increased expression of UCP1, PRDM16, and prohibitin. Alterations in PRDM16 expression correlated with increased AMPK and phosphorylation of mTOR. Ang 1–7 treatment elevated thermogenesis in subcutaneous white adipose tissue without altering UCP1 expression. These changes occurred in the context of decreased lipid accumulation in BAT from HFD-fed mice, preserved insulin signaling concomitant with phosphorylation of hormone-sensitive lipase and decreased expression of perilipin. These data suggest that Ang 1–7 induces brown adipocyte differentiation leading to upregulation of thermogenesis and improved metabolic profile in diet-induced obesity. Enhancing Ang 1–7 action represents a promising therapy to increase BAT and to reduce the metabolic complications associated with diet-induced obesity.


Sign in / Sign up

Export Citation Format

Share Document