scholarly journals Spatiotemporal in vivo tracking of polyclonal human regulatory T cells reveals a role for innate immune cells in Treg transplant recruitment.

Author(s):  
Jacinta Jacob ◽  
Suchita Nadkarni ◽  
Alessia Volpe ◽  
Qi Peng ◽  
Sim L. Tung ◽  
...  
Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 996-996
Author(s):  
Xiufen Chen ◽  
Dominick Fosco ◽  
Douglas E. Kline ◽  
Justin Kline

Abstract Pre-apoptotic cancer cells release internalized calreticulin (CRT) to their surface prior to death, which acts as an ‘eat-me’ signal to local phagocytes. Chemotherapy and irradiation, which can induce immunogenic cell death through CRT translocation, can also result in local and/or systemic immune suppression in the host. To bypass the requirement of exposing the host to chemotherapy to induce translocation of CRT to the cell surface, murine acute myeloid leukemia (AML) cells (C1498), were engineered to constitutively express cell surface CRT (C1498.CRT). Vector control C1498 or C1498.CRT cells were inoculated intravenously (IV) into C57BL/6 mice. Significantly prolonged survival was observed in hosts harboring C1498.CRT versus vector control C1498 cells systemically. The survival benefit were abrogated in both Rag2-/- hosts or by depletion of T cells with anti-CD4 plus anti-CD8 antibodies, arguing that the immune-mediated effect of cell-surface CRT expression is dependent upon a functional adaptive immune system. More strikingly, systemic inoculation with C1498.CRT cells expressing the model SIYRYYGL (SIY) peptide antigen (C1498.SIY.CRT cells) resulted in almost complete protection from AML development (>90% long term survival vs. 10% of C1498.SIY vector control cells). All animals surviving a primary C1498.SIY.CRT challenge rejected a subsequent re-challenge with C1498.SIY cells, suggesting that CRT-expressing AML cells promote immunologic memory. Significantly enhanced expansion and unregulated IFNγ production were observed among SIY-specific T cell receptor transgenic CD8+ 2C T cells following their adoptive transfer into hosts bearing C1498.SIY.CRT AML cells versus vector control C1498.SIY cells. Interestingly, CRT expression on AML cells did not promote their in vivo phagocytosis by innate immune cells, specifically splenic CD8a+ dendritic cells known to engulf AML cells following their IV inoculation. IL-12 production by CD8α+CD11c+ dendritic cells which had engulfed C1498 and C1498.CRT cells in vivo was similarly induced, and cross-presentation of the SIY antigen to 2C T cells ex vivo by purified CD8a+DCs following in vivo exposure to C1498.SIY or C1498.SIY.CRT cells was also similar. In conclusion, it is clear that expression on CRT on the surface of AML cells leads to robust leukemia-specific T cell activation and expansion resulting in prolonged leukemia-specific survival in AML-bearing animals. Although a direct effect of CRT on innate immune cells, such as dendritic cells, is suspected, the molecular mechanism underlying the “CRT effect” remains unclear, and is being explored further through gene expression analysis in purified DCs which have engulfed CRT-expressing or control AML cells in vivo, as well as in animals genetically deficient in the putative CRT receptor, LRP, in dendritic cells. It will be of interest to analyze spontaneous CRT expression on AML cells from human samples and to correlate cell surface CRT expression with the presence or absence of spontaneous T cell responses to known AML antigens and with clinical outcomes. Disclosures No relevant conflicts of interest to declare.


2009 ◽  
Vol 183 (5) ◽  
pp. 2946-2956 ◽  
Author(s):  
Yakup Tanriver ◽  
Alfonso Martín-Fontecha ◽  
Kulachelvy Ratnasothy ◽  
Giovanna Lombardi ◽  
Robert Lechler

2014 ◽  
Vol 126 (9) ◽  
pp. 593-612 ◽  
Author(s):  
Ilja Striz ◽  
Eva Brabcova ◽  
Libor Kolesar ◽  
Alena Sekerkova

Innate immune cells, particularly macrophages and epithelial cells, play a key role in multiple layers of immune responses. Alarmins and pro-inflammatory cytokines from the IL (interleukin)-1 and TNF (tumour necrosis factor) families initiate the cascade of events by inducing chemokine release from bystander cells and by the up-regulation of adhesion molecules required for transendothelial trafficking of immune cells. Furthermore, innate cytokines produced by dendritic cells, macrophages, epithelial cells and innate lymphoid cells seem to play a critical role in polarization of helper T-cell cytokine profiles into specific subsets of Th1/Th2/Th17 effector cells or regulatory T-cells. Lastly, the innate immune system down-regulates effector mechanisms and restores homoeostasis in injured tissue via cytokines from the IL-10 and TGF (transforming growth factor) families mainly released from macrophages, preferentially the M2 subset, which have a capacity to induce regulatory T-cells, inhibit the production of pro-inflammatory cytokines and induce healing of the tissue by regulating extracellular matrix protein deposition and angiogenesis. Cytokines produced by innate immune cells represent an attractive target for therapeutic intervention, and multiple molecules are currently being tested clinically in patients with inflammatory bowel disease, rheumatoid arthritis, systemic diseases, autoinflammatory syndromes, fibrosing processes or malignancies. In addition to the already widely used blockers of TNFα and the tested inhibitors of IL-1 and IL-6, multiple therapeutic molecules are currently in clinical trials targeting TNF-related molecules [APRIL (a proliferation-inducing ligand) and BAFF (B-cell-activating factor belonging to the TNF family)], chemokine receptors, IL-17, TGFβ and other cytokines.


2018 ◽  
Vol 23 ◽  
pp. 246-251 ◽  
Author(s):  
Weihua Gong ◽  
Baoqing Liu ◽  
Juntao Chen ◽  
Chen Liu ◽  
Zhonghua Shen

2020 ◽  
Vol 21 (12) ◽  
pp. 4441 ◽  
Author(s):  
Pierpaolo Ginefra ◽  
Girieca Lorusso ◽  
Nicola Vannini

In recent years, immunotherapy has become the most promising therapy for a variety of cancer types. The development of immune checkpoint blockade (ICB) therapies, the adoptive transfer of tumor-specific T cells (adoptive cell therapy (ACT)) or the generation of T cells engineered with chimeric antigen receptors (CAR) have been successfully applied to elicit durable immunological responses in cancer patients. However, not all the patients respond to these therapies, leaving a consistent gap of therapeutic improvement that still needs to be filled. The innate immune components of the tumor microenvironment play a pivotal role in the activation and modulation of the adaptive immune response against the tumor. Indeed, several efforts are made to develop strategies aimed to harness innate immune cells in the context of cancer immunotherapy. In this review, we describe the contribution of innate immune cells in T-cell-based cancer immunotherapy and the therapeutic approaches implemented to broaden the efficacy of these therapies in cancer patients.


2018 ◽  
Author(s):  
Nicholas Borcherding ◽  
Kawther K. Ahmed ◽  
Andrew P. Voigt ◽  
Ajaykumar Vishwakarma ◽  
Ryan Kolb ◽  
...  

Regulatory T cells (Tregs) are a population of T cells that exert a suppressive effect on a variety of immune cells and non-immune cells. The suppressive effects of Tregs are detrimental to anti-tumor immunity. Recent investigations into cancer-associated Tregs have identified common expression patterns for tumor-infiltration, however the functional heterogeneity in tumor-infiltrating (TI) Treg is largely unknown. We performed single-cell sequencing on immune cells derived from renal clear cell carcinoma (ccRCC) patients, isolating 160 peripheral-blood (PB) Tregs and 574 TI Tregs. We identified distinct transcriptional TI Treg cell fates, with a suppressive subset expressing CD177. We demonstrate CD177+ TI-Tregs have preferential suppressive effects in vivo and ex vivo. Gene signatures derived the CD177+ Treg subset had superior ability to predict survival in ccRCC and seven other cancer types. Further investigation into the development and regulation of TI-Treg heterogeneity will be vital to the application of tumor immunotherapies that possess minimal side effects.


2020 ◽  
Vol 8 (2) ◽  
pp. 176 ◽  
Author(s):  
Yann Sellier ◽  
Florence Marliot ◽  
Bettina Bessières ◽  
Julien Stirnemann ◽  
Ferechte Encha-Razavi ◽  
...  

Background: The understanding of the pathogenesis of cytomegalovirus (CMV)-induced fetal brain lesions is limited. We aimed to quantify adaptive and innate immune cells and CMV-infected cells in fetal brains with various degrees of brain damage. Methods: In total, 26 archived embedded fetal brains were studied, of which 21 were CMV-infected and classified in severely affected (n = 13) and moderately affected (n = 8), and 5 were uninfected controls. The respective magnitude of infected cells, immune cells (CD8+, B cells, plasma cells, NK cells, and macrophages), and expression of immune checkpoint receptors (PD-1/PD-L1 and LAG-3) were measured by immunochemistry and quantified by quantitative imaging analysis. Results: Quantities of CD8+, plasma cells, NK cells, macrophages, and HCMV+ cells and expression of PD-1/PD-L1 and LAG-3 were significantly higher in severely affected than in moderately affected brains (all p values < 0.05). A strong link between higher number of stained cells for HCMV/CD8 and PD-1 and severity of brain lesions was found by component analysis. Conclusions: The higher expression of CD8, PD-1, and LAG-3 in severely affected brains could reflect immune exhaustion of cerebral T cells. These exhausted T cells could be ineffective in controlling viral multiplication itself, leading to more severe brain lesions. The study of the functionality of brain leucocytes ex vivo is needed to confirm this hypothesis.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Sung Won Lee ◽  
Hyun Jung Park ◽  
Nayoung Kim ◽  
Seokmann Hong

Natural killer dendritic cells (NKDCs) possess potent anti-tumor activity, but the cellular effect of NKDC interactions with other innate immune cells is unclear. In this study, we demonstrate that the interaction of NKDCs and natural killer T (NKT) cells is required for the anti-tumor immune responses that are elicited byα-galactosylceramide (α-GC) in mice. The rapid and strong expression of interferon-γby NKDCs afterα-GC stimulation was dependent on NKT cells. Various NK and DC molecular markers and cytotoxic molecules were up-regulated followingα-GC administration. This up-regulation could improve NKDC presentation of tumor antigens and increase cytotoxicity against tumor cells. NKDCs were required for the stimulation of DCs, NK cells, and NKT cells. The strong anti-tumor immune responses elicited byα-GC may be due to the down-regulation of regulatory T cells. Furthermore, the depletion of NKDCs dampened the tumor clearance mediated byα-GC-stimulated NKT cellsin vivo. Taken together, these results indicate that complex interactions of innate immune cells might be required to achieve optimal anti-tumor immune responses during the early stages of tumorigenesis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dearbhla M. Murphy ◽  
Kingston H. G. Mills ◽  
Sharee A. Basdeo

The burgeoning field of innate immune training, also called trained immunity, has given immunologists new insights into the role of innate responses in protection against infection and in modulating inflammation. Moreover, it has led to a paradigm shift in the way we think about immune memory and the interplay between innate and adaptive immune systems in conferring immunity against pathogens. Trained immunity is the term used to describe the medium-term epigenetic and metabolic reprogramming of innate immune cells in peripheral tissues or in the bone marrow stem cell niche. It is elicited by an initial challenge, followed by a significant period of rest that results in an altered response to a subsequent, unrelated challenge. Trained immunity can be associated with increased production of proinflammatory mediators, such as IL-1β, TNF and IL-6, and increased expression of markers on innate immune cells associated with antigen presentation to T cells. The microenvironment created by trained innate immune cells during the secondary challenge may have profound effects on T cell responses, such as altering the differentiation, polarisation and function of T cell subtypes, including Th17 cells. In addition, the Th1 cytokine IFN-γ plays a critical role in establishing trained immunity. In this review, we discuss the evidence that trained immunity impacts on or can be impacted by T cells. Understanding the interplay between innate immune training and how it effects adaptive immunity will give insights into how this phenomenon may affect the development or progression of disease and how it could be exploited for therapeutic interventions or to enhance vaccine efficacy.


Sign in / Sign up

Export Citation Format

Share Document