scholarly journals A genetically-encoded toolkit of functionalized nanobodies against fluorescent proteins for visualizing and manipulating intracellular signalling

2019 ◽  
Author(s):  
David L. Prole ◽  
Colin W. Taylor

AbstractBackgroundIntrabodies enable targeting of proteins in live cells, but it remains a huge task to generate specific intrabodies against the thousands of proteins in a proteome. We leverage the widespread availability of fluorescently labelled proteins to visualize and manipulate intracellular signalling pathways in live cells by using nanobodies targeting fluorescent protein tags.ResultsWe generated a toolkit of plasmids encoding nanobodies against red and green fluorescent proteins (RFP and GFP variants), fused to functional modules. These include fluorescent sensors for visualization of Ca2+, H+ and ATP/ADP dynamics; oligomerizing or heterodimerizing modules that allow recruitment or sequestration of proteins and identification of membrane contact sites between organelles; SNAP tags that allow labelling with fluorescent dyes and targeted chromophore-assisted light inactivation; and nanobodies targeted to lumenal sub-compartments of the secretory pathway. We also developed two methods for crosslinking tagged proteins: a dimeric nanobody, and RFP-targeting and GFP-targeting nanobodies fused to complementary hetero-dimerizing domains. We show various applications of the toolkit and demonstrate, for example, that IP3 receptors deliver Ca2+ to the outer membrane of only a subset of mitochondria, and that only one or two sites on a mitochondrion form membrane contacts with the plasma membrane.ConclusionsThis toolkit greatly expands the utility of intrabodies for studying cell signalling in live cells.

2001 ◽  
Vol 170 (2) ◽  
pp. 297-306 ◽  
Author(s):  
JM Tavare ◽  
LM Fletcher ◽  
GI Welsh

Subcellular compartmentalisation of signalling molecules is an important phenomenon not only in defining how a signalling pathway is activated but also in influencing the desired physiological output of that pathway (e.g. cell growth or differentiation, regulation of metabolism, cytoskeletal changes etc.). Biochemical analyses of protein and lipid compartmentalisation by, for example, subcellular fractionation presents many technical difficulties. However, this aspect of cell signalling research has seen a major revolution thanks to the cloning and availability of a variety of mutant green fluorescent protein derivatives with distinct molecular properties. Mutants with increased brightness, altered excitation and emission maxima, altered stability and differential sensitivity to pH, are now in widespread use for following the trafficking and function of proteins in living cells and for monitoring the intracellular environment. In this review we focus on some of the recent developments in the use of green fluorescent proteins for studying intracellular signalling pathways often with special reference to the actions of insulin. We also discuss the future utility of these proteins to analyse protein--protein interactions in signalling pathways using fluorescence resonance energy transfer.


2012 ◽  
Vol 23 (11) ◽  
pp. 2198-2212 ◽  
Author(s):  
Jason G. Kay ◽  
Mirkka Koivusalo ◽  
Xiaoxiao Ma ◽  
Thorsten Wohland ◽  
Sergio Grinstein

Much has been learned about the role of exofacial phosphatidylserine (PS) in apoptosis and blood clotting using annexin V. However, because annexins are impermeant and unable to bind PS at low calcium concentration, they are unsuitable for intracellular use. Thus little is known about the topology and dynamics of PS in the endomembranes of normal cells. We used two new probes—green fluorescent protein (GFP)–LactC2, a genetically encoded fluorescent PS biosensor, and 1-palmitoyl-2-(dipyrrometheneboron difluoride)undecanoyl-sn-glycero-3-phospho-l-serine (TopFluor-PS), a synthetic fluorescent PS analogue—to examine PS distribution and dynamics inside live cells. The mobility of PS was assessed by a combination of advanced optical methods, including single-particle tracking and fluorescence correlation spectroscopy. Our results reveal the existence of a sizable fraction of PS with limited mobility, with cortical actin contributing to the confinement of PS in the plasma membrane. We were also able to measure the dynamics of PS in endomembrane organelles. By targeting GFP-LactC2 to the secretory pathway, we detected the presence of PS in the luminal leaflet of the endoplasmic reticulum. Our data provide new insights into properties of PS inside cells and suggest mechanisms to account for the subcellular distribution and function of this phospholipid.


2015 ◽  
Author(s):  
Anton Khmelinskii ◽  
Matthias Meurer ◽  
Chi-Ting Ho ◽  
Birgit Besenbeck ◽  
Julia Fueller ◽  
...  

Tandem fluorescent protein timers (tFTs) report on protein age through time-dependent change in color, which can be exploited to study protein turnover and trafficking. Each tFT, composed of two fluorescent proteins (FPs) that differ in maturation kinetics, is suited to follow protein dynamics within a specific time range determined by the maturation rates of both FPs. So far tFTs were constructed by combining different slower-maturing red fluorescent proteins (redFPs) with the same faster-maturing superfolder green fluorescent protein (sfGFP). Towards a comprehensive characterization of tFTs, we compare here tFTs composed of different faster-maturing greenFPs, while keeping the slower-maturing redFP constant (mCherry). Our results indicate that the greenFP maturation kinetics influences the time range of a tFT. Moreover, we observe that commonly used greenFPs can partially withstand proteasomal degradation due to the stability of the FP fold, which results in accumulation of tFT fragments in the cell. Depending on the order of FPs in the timer, incomplete proteasomal degradation either shifts the time range of the tFT towards slower time scales or precludes its use for measurements of protein turnover. We identify greenFPs that are efficiently degraded by the proteasome and provide simple guidelines for design of new tFTs.


2001 ◽  
Vol 183 (12) ◽  
pp. 3791-3794 ◽  
Author(s):  
Fernando Rodrigues ◽  
Martijn van Hemert ◽  
H. Yde Steensma ◽  
Manuela Côrte-Real ◽  
Cecı́la Leão

ABSTRACT We describe the utilization of a red fluorescent protein (DsRed) as an in vivo marker for Saccharomyces cerevisiae. Clones expressing red and/or green fluorescent proteins with both cytoplasmic and nuclear localization were obtained. A series of vectors are now available which can be used to create amino-terminal (N-terminal) and carboxyl-terminal (C-terminal) fusions with the DsRed protein.


2019 ◽  
Vol 16 (152) ◽  
pp. 20180848 ◽  
Author(s):  
Maksym Golub ◽  
Virginia Guillon ◽  
Guillaume Gotthard ◽  
Dominik Zeller ◽  
Nicolas Martinez ◽  
...  

Cyan fluorescent proteins (CFPs) are variants of green fluorescent proteins in which the central tyrosine of the chromophore has been replaced by a tryptophan. The increased bulk of the chromophore within a compact protein and the change in the positioning of atoms capable of hydrogen bonding have made it difficult to optimize their fluorescence properties, which took approximately 15 years between the availability of the first useable CFP, enhanced cyan fluorescent protein (ECFP), and that of a variant with almost perfect fluorescence efficiency, mTurquoise2. To understand the molecular bases of the progressive improvement in between these two CFPs, we have studied by incoherent neutron scattering the dynamics of five different variants exhibiting progressively increased fluorescence efficiency along the evolution pathway. Our results correlate well with the analysis of the previously determined X-ray crystallographic structures, which show an increase in flexibility between ECFP and the second variant, Cerulean, which is then hindered in the three later variants, SCFP3A (Super Cyan Fluorescent Protein 3A), mTurquoise and mTurquoise2. This confirms that increasing the rigidity of the direct environment of the fluorescent chromophore is not the sole parameter leading to brighter fluorescent proteins and that increased flexibility in some cases may be helpful.


2009 ◽  
Vol 277 (1685) ◽  
pp. 1155-1160 ◽  
Author(s):  
Steven H. D. Haddock ◽  
Nadia Mastroianni ◽  
Lynne M. Christianson

Genes for the family of green-fluorescent proteins (GFPs) have been found in more than 100 species of animals, with some species containing six or more copies producing a variety of colours. Thus far, however, these species have all been within three phyla: Cnidaria, Arthropoda and Chordata. We have discovered GFP-type fluorescent proteins in the phylum Ctenophora, the comb jellies. The ctenophore proteins share the x YG chromophore motif of all other characterized GFP-type proteins. These proteins exhibit the uncommon property of reversible photoactivation, in which fluorescent emission becomes brighter upon exposure to light, then gradually decays to a non-fluorescent state. In addition to providing potentially useful optical probes with novel properties, finding a fluorescent protein in one of the earliest diverging metazoans adds further support to the possibility that these genes are likely to occur throughout animals.


2020 ◽  
Author(s):  
Matthew G Eason ◽  
Antonia T Pandelieva ◽  
Marc M Mayer ◽  
Safwat T Khan ◽  
Hernan G Garcia ◽  
...  

Fluorescent proteins are widely used as fusion tags to detect protein expression in vivo. To become fluorescent, these proteins must undergo chromophore maturation, a slow process with a half-time of 5 to >30 min, which causes delays in real-time detection of protein expression. Here, we engineer a genetically-encoded fluorescent biosensor to enable detection of protein expression within seconds in live cells. This sensor for transiently-expressed proteins (STEP) is based on a fully matured but dim green fluorescent protein in which pre-existing fluorescence increases 11-fold in vivo following the specific and rapid binding of a protein tag (Kd 120 nM, kon 1.7 x 10^5 M-1s-1). In live E. coli cells, our STEP biosensor enables detection of protein expression twice as fast as the use of standard fluorescent protein fusions. Our biosensor opens the door to the real-time study of short-timescale processes in research model animals with high spatiotemporal resolution.


Author(s):  
Robert J. Trachman ◽  
Adrian R. Ferré-D'Amaré

AbstractFluorescence turn-on aptamers,in vitroevolved RNA molecules that bind conditional fluorophores and activate their fluorescence, have emerged as RNA counterparts of the fluorescent proteins. Turn-on aptamers have been selected to bind diverse fluorophores, and they achieve varying degrees of specificity and affinity. These RNA–fluorophore complexes, many of which exceed the brightness of green fluorescent protein and their variants, can be used as tags for visualizing RNA localization and transport in live cells. Structure determination of several fluorescent RNAs revealed that they have diverse, unrelated overall architectures. As most of these RNAs activate the fluorescence of their ligands by restraining their photoexcited states into a planar conformation, their fluorophore binding sites have in common a planar arrangement of several nucleobases, most commonly a G-quartet. Nonetheless, each turn-on aptamer has developed idiosyncratic structural solutions to achieve specificity and efficient fluorescence turn-on. The combined structural diversity of fluorophores and turn-on RNA aptamers has already produced combinations that cover the visual spectrum. Further molecular evolution and structure-guided engineering is likely to produce fluorescent tags custom-tailored to specific applications.


Sign in / Sign up

Export Citation Format

Share Document