scholarly journals Cytokinin functions as an asymmetric and anti-gravitropic signal in lateral roots

2019 ◽  
Author(s):  
Sascha Waidmann ◽  
Michel Ruiz Rosquete ◽  
Maria Schöller ◽  
Heike Lindner ◽  
Therese LaRue ◽  
...  

AbstractDirectional organ growth allows the plant root system to strategically cover its surroundings. Intercellular auxin transport is aligned with the gravity vector in the primary root tips, facilitating downward organ bending at the lower root flank. Here we show that cytokinin signaling functions as a lateral root specific anti-gravitropic component, promoting the radial distribution of the root system. We performed a genome-wide association study and revealed that signal peptide processing of Cytokinin Oxidase 2 (CKX2) affects its enzymatic activity and, thereby, determines the degradation of cytokinins in naturalArabidopsis thalianaaccessions. Cytokinin signaling interferes with growth at the upper lateral root flank and thereby prevents downward bending. Our interdisciplinary approach revealed that two phytohormonal cues at opposite organ flanks counterbalance each other’s negative impact on growth, suppressing organ growth towards gravity and allow for radial expansion of the root system.


2020 ◽  
Vol 71 (8) ◽  
pp. 2397-2411 ◽  
Author(s):  
Sascha Waidmann ◽  
Elizabeth Sarkel ◽  
Jürgen Kleine-Vehn

Abstract The root system architecture describes the shape and spatial arrangement of roots within the soil. Its spatial distribution depends on growth and branching rates as well as directional organ growth. The embryonic primary root gives rise to lateral (secondary) roots, and the ratio of both root types changes over the life span of a plant. Most studies have focused on the growth of primary roots and the development of lateral root primordia. Comparably less is known about the growth regulation of secondary root organs. Here, we review similarities and differences between primary and lateral root organ growth, and emphasize particularly how external stimuli and internal signals differentially integrate root system growth.



Author(s):  
Marek Šírl ◽  
Tereza Šnajdrová ◽  
Dolores Gutiérrez-Alanís ◽  
Joseph G. Dubrovsky ◽  
Jean Phillipe Vielle-Calzada ◽  
...  

The AT-HOOK MOTIF NUCLEAR LOCALIZED PROTEIN (AHL) gene family encodes embryophyte-specific nuclear proteins with DNA binding activity. They modulate gene expression and affect various developmental processes in plants. We identify AHL18 (At3G60870) as a developmental modulator of root system architecture and growth. AHL18 regulates the length of the proliferation domain and number of dividing cells in the root apical meristem and thereby, cell production. Both primary root growth and lateral root development respond according to AHL18 transcription level. The ahl18 knock-out plants show reduced root systems due to a shorter primary root and a lower number of lateral roots. This change results from a higher number of arrested and non-developing lateral root primordia (LRP) rather than from decreased initiation. Overexpression of AHL18 results in a more extensive root system, longer primary roots, and increased density of lateral root initiation events. Formation of lateral roots is affected during the initiation of LRP and later development. AHL18 regulate root apical meristem activity, lateral root initiation and emergence, which is in accord with localization of its expression.



2020 ◽  
Author(s):  
Lina Duan ◽  
Juan Manuel Pérez-Ruiz ◽  
Francisco Javier Cejudo ◽  
José R. Dinneny

AbstractPhotosynthesis in leaves generates the fixed-carbon resources and essential metabolites that support sink tissues, such as roots [1]. One of these products, sucrose, is known to promote primary root growth, but it is not clear what other molecules may be involved and whether other stages of root system development are affected by photosynthate levels [2]. Through a mutant screen to identify pathways regulating root system architecture, we identified a mutation in the CYCLOPHILIN 38 (CYP38) gene, which causes an accumulation of pre-emergent stage lateral roots, with a minor effect on primary root growth. CYP38 was previously reported to maintain the stability of Photosystem II (PSII) in chloroplasts [3]. CYP38 expression is enriched in the shoot and grafting experiments show that the gene acts non-cell autonomously to promote lateral root emergence. Growth of wild-type plants under low light conditions phenocopied the cyp38 lateral root emergence phenotype as did the inhibition of PSII-dependent electron transport or NADPH production. Importantly, the cyp38 root phenotype is not rescued by exogenous sucrose, suggesting the involvement of another metabolite. Auxin (IAA) is an essential hormone promoting root growth and its biosynthesis from tryptophan is dependent on reductant generated during photosynthesis [4,5]. Both WT seedlings grown under low light and cyp38 mutants have highly diminished levels of IAA in root tissues. The cyp38 lateral root defect is rescued by IAA treatment, revealing that photosynthesis promotes lateral root emergence partly through IAA biosynthesis. Metabolomic profiling shows that the accumulation of several defense-related metabolites are also photosynthesis-dependent, suggesting that the regulation of a number of energy-intensive pathways are down-regulated when light becomes limiting.



2020 ◽  
Vol 21 (5) ◽  
pp. 1886 ◽  
Author(s):  
Marek Širl ◽  
Tereza Šnajdrová ◽  
Dolores Gutiérrez-Alanís ◽  
Joseph G. Dubrovsky ◽  
Jean Phillipe Vielle-Calzada ◽  
...  

The At-Hook Motif Nuclear Localized Protein (AHL) gene family encodes embryophyte-specific nuclear proteins with DNA binding activity. They modulate gene expression and affect various developmental processes in plants. We identify AHL18 (At3G60870) as a developmental modulator of root system architecture and growth. AHL18 is involved in regulation of the length of the proliferation domain and number of dividing cells in the root apical meristem and thereby, cell production. Both primary root growth and lateral root development respond according to AHL18 transcription level. The ahl18 knock-out plants show reduced root systems due to a shorter primary root and a lower number of lateral roots. This change results from a higher number of arrested and non-developing lateral root primordia (LRP) rather than from a decreased LRP initiation. The over-expression of AHL18 results in a more extensive root system, longer primary roots, and increased density of lateral root initiation events. AHL18 is thus involved in the formation of lateral roots at both LRP initiation and their later development. We conclude that AHL18 participates in modulation of root system architecture through regulation of root apical meristem activity, lateral root initiation and emergence; these correspond well with expression pattern of AHL18.



2020 ◽  
Vol 11 ◽  
Author(s):  
Waldiodio Seck ◽  
Davoud Torkamaneh ◽  
François Belzile

Increasing the understanding genetic basis of the variability in root system architecture (RSA) is essential to improve resource-use efficiency in agriculture systems and to develop climate-resilient crop cultivars. Roots being underground, their direct observation and detailed characterization are challenging. Here, were characterized twelve RSA-related traits in a panel of 137 early maturing soybean lines (Canadian soybean core collection) using rhizoboxes and two-dimensional imaging. Significant phenotypic variation (P < 0.001) was observed among these lines for different RSA-related traits. This panel was genotyped with 2.18 million genome-wide single-nucleotide polymorphisms (SNPs) using a combination of genotyping-by-sequencing and whole-genome sequencing. A total of 10 quantitative trait locus (QTL) regions were detected for root total length and primary root diameter through a comprehensive genome-wide association study. These QTL regions explained from 15 to 25% of the phenotypic variation and contained two putative candidate genes with homology to genes previously reported to play a role in RSA in other species. These genes can serve to accelerate future efforts aimed to dissect genetic architecture of RSA and breed more resilient varieties.



2021 ◽  
Author(s):  
Pierre-Mathieu Pélissier ◽  
Hans Motte ◽  
Tom Beeckman

Abstract Lateral roots are important to forage for nutrients due to their ability to increase the uptake area of a root system. Hence, it comes as no surprise that lateral root formation is affected by nutrients or nutrient starvation, and as such contributes to the root system plasticity. Understanding the molecular mechanisms regulating root adaptation dynamics towards nutrient availability is useful to optimize plant nutrient use efficiency. There is at present a profound, though still evolving, knowledge on lateral root pathways. Here, we aimed to review the intersection with nutrient signaling pathways to give an update on the regulation of lateral root development by nutrients, with a particular focus on nitrogen. Remarkably, it is for most nutrients not clear how lateral root formation is controlled. Only for nitrogen, one of the most dominant nutrients in the control of lateral root formation, the crosstalk with multiple key signals determining lateral root development is clearly shown. In this update, we first present a general overview of the current knowledge of how nutrients affect lateral root formation, followed by a deeper discussion on how nitrogen signaling pathways act on different lateral root-mediating mechanisms for which multiple recent studies yield insights.



1963 ◽  
Vol 41 (5) ◽  
pp. 579-589 ◽  
Author(s):  
M. V. S. Raju ◽  
T. A. Steeves ◽  
R. T. Coupland

The significance of Euphorbia esula L. as a weed is related to its capacity to persist under adverse conditions and to its mode of reproduction. In both these properties, the root system plays an important role. The root system is initially established by seedlings. The seedling has a vigorous primary root with extensive longitudinal growth and considerable cambial activity. Such a root has been designated a "long" root. By contrast, the first lateral roots produced on the primary root have limited growth and no cambial activity. These roots have been termed "short" roots. Thus, the seedling exhibits a "heterorhizic" pattern. Lateral long roots also arise on the primary root of seedlings but their origin is delayed until cambial activity has begun. Such lateral long roots arise much earlier on seedlings growing in denuded areas than on those growing in areas covered by dense vegetation. The mature root system is described in terms of horizontal and vertical long roots, which make up the conspicuous framework of the system, and of the short roots which they produce. Long roots produce shoot-buds and the origin of these structures is delayed until cambial activity has started. Short roots do not give rise to shoot-buds. Cambial activity in long roots appears to be connected with bud production and its absence in short roots probably underlies their inability to produce buds.L'importance de Euphorbia esula L. comme mauvaise herbe est connexé a son capacité de persister dans les situations hostiles et à sa methode de reproduction. Dans ces deux caractéristiques, le système des racines a une signification profunde. Initialement le système des racines s'établit dans le semis. Le semis a une racine primaire très forte avec beaucoup de croissance longitudinale et avec une activité considérable du cambium. Une racine de cette espèce s'appelle une "longue" racine (long root). Par contre, les premières racines latérales que poussent sur la racine primaire ont croissance limité et aucun activité du cambium. Ces racines s'appellent les "courtes" racines (short roots). De cette façon, le semis montre un dessin "heterorhizique" (heterorhizic). Les longues racines latérales ont aussi leur origine sur la racine primaire du semis, mais l'origine est retardé jusqu'au commencement de l'activité du cambium. Les racines de cette espèce apparaissent beaucoup plus tôt sur les semis qui sont situés en terre sans autre végétation, que sur ceux qui sont situés au milieu des autres plantes. Le système adulte des racines se décrit sous forme des longues racines de l'espèce horizontale et verticale, lesquelles constituent la charpente bien visible du système, et des courtes racines que sont produites par les longues racines. Les longues racines produisent les bourgeons, mais l'origine des bourgeons est retardé jusqu'au commencement de l'activité du cambium dans les racines. Les courtes racines ne produisent pas les bourgeons. Il paraît que l'activité du cambium dans les longues racines soit corrélative avec l'initiation des bourgeons et l'absence du cambium dans les courtes racines explique probablement leur incapacité à produire les bourgeons.



2019 ◽  
Vol 48 (No. 12) ◽  
pp. 549-564 ◽  
Author(s):  
J. Kodrík ◽  
M. Kodrík

Beech is, thanks to its root system, in general considered to be a wind-resistant woody plant species. Nevertheless, the research on beech root systems has revealed that it is not possible to mechanically divide the woody plants into deep rooted and shallow rooted, because their root systems are modified according to various stand conditions. The root system shape, growth and development are mostly influenced by soil conditions and groundwater level. In the case of a high groundwater level beech root systems do not form tap roots and the lateral roots are rather thin and weak. Important factor for the tree static stability is number of roots with diameter 3–10 cm. The most important for the tree stability are roots with diameter over 10 cm. Wood-destroying fungi have strong negative impact on tree static stability. There are differences between beech below-ground biomass growing in soils rich in nutrients and poor in nutrients. The total below-ground biomass of the beech stands poor in nutrients is higher.



Author(s):  
Alejandro Alonso-Díaz ◽  
Santosh B Satbhai ◽  
Roger de Pedro-Jové ◽  
Hannah M Berry ◽  
Christian Göschl ◽  
...  

Abstract Bacterial wilt caused by the soil-borne pathogen Ralstonia solancearum is economically devastating, with no effective methods to fight the disease. This pathogen invades plants through their roots and colonizes their xylem, clogging the vasculature and causing rapid wilting. Key to preventing colonization are the early defense responses triggered in the host’s root upon infection, which remain mostly unknown. Here, we have taken advantage of a high-throughput in vitro infection system to screen natural variability associated to the root growth inhibition phenotype caused by R. solanacearum in Arabidopsis during the first hours of infection. To analyze the genetic determinants of this trait, we have performed a Genome-Wide Association Study, identifying allelic variation at several loci related to cytokinin metabolism, including genes responsible for biosynthesis and degradation of cytokinin. Further, our data clearly demonstrate that cytokinin signaling is induced early during the infection process and cytokinin contributes to immunity against R. solanacearum. This study highlights a new role of cytokinin in root immunity, paving the way for future research that will help understanding the mechanisms underpinning root defenses.



Plant Disease ◽  
2004 ◽  
Vol 88 (9) ◽  
pp. 1011-1016 ◽  
Author(s):  
Loretta M. Ortiz-Ribbing ◽  
Darin M. Eastburn

Experiments were conducted in the greenhouse to evaluate the role that infection location (taproot versus lateral root) plays in disease development of sudden death syndrome (SDS) on soybean (Glycine max) caused by the fungus Fusarium solani f. sp. glycines. Root characteristics of 12 soybean cultivars, representing a range of SDS reactions, were evaluated and compared for disease responses. A method was developed to facilitate taproot or lateral root infection. Results show that this procedure may be useful for observing a continuum of foliar and root disease responses. Significant differences in root length, surface area, and average diameter were observed among cultivars when infection occurred at the taproot or on the lateral roots. A significant correlation existed between foliar symptoms (i.e., area under the disease progress curve [AUDPC]) and root length, surface area, and volume for inoculated plants. Root volume and percent root discoloration were significantly different among individual soybean cultivars, and percent root discoloration was associated with AUDPC values only when the initial site of infection was on the lateral roots of soybean plants. Useful information about root system responses to SDS may be obtained from infection of the entire root system as opposed to only taproot infection.



Sign in / Sign up

Export Citation Format

Share Document