scholarly journals Primo: integration of multiple GWAS and omics QTL summary statistics for elucidation of molecular mechanisms of trait-associated SNPs and detection of pleiotropy in complex traits

2019 ◽  
Author(s):  
Kevin J Gleason ◽  
Fan Yang ◽  
Brandon L Pierce ◽  
Xin He ◽  
Lin S Chen

AbstractTo provide a comprehensive mechanistic interpretation of how known trait-associated SNPs affect complex traits, we propose a method – Primo – for integrative analysis of GWAS summary statistics with multiple sets of omics QTL summary statistics from different cellular conditions or studies. Primo examines SNPs’ association patterns to complex and omics traits. In gene regions harboring known susceptibility loci, Primo performs conditional association analysis to account for linkage disequilibrium. Primo allows for unknown study heterogeneity and sample correlations. We show two applications using Primo to examine the molecular mechanisms of known susceptibility loci and to detect and interpret pleiotropic effects.

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Kevin J. Gleason ◽  
Fan Yang ◽  
Brandon L. Pierce ◽  
Xin He ◽  
Lin S. Chen

Abstract To provide a comprehensive mechanistic interpretation of how known trait-associated SNPs affect complex traits, we propose a method, Primo, for integrative analysis of GWAS summary statistics with multiple sets of omics QTL summary statistics from different cellular conditions or studies. Primo examines association patterns of SNPs to complex and omics traits. In gene regions harboring known susceptibility loci, Primo performs conditional association analysis to account for linkage disequilibrium. Primo allows for unknown study heterogeneity and sample correlations. We show two applications using Primo to examine the molecular mechanisms of known susceptibility loci and to detect and interpret pleiotropic effects.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuhua Zhang ◽  
◽  
Corbin Quick ◽  
Ketian Yu ◽  
Alvaro Barbeira ◽  
...  

Abstract We propose a new computational framework, probabilistic transcriptome-wide association study (PTWAS), to investigate causal relationships between gene expressions and complex traits. PTWAS applies the established principles from instrumental variables analysis and takes advantage of probabilistic eQTL annotations to delineate and tackle the unique challenges arising in TWAS. PTWAS not only confers higher power than the existing methods but also provides novel functionalities to evaluate the causal assumptions and estimate tissue- or cell-type-specific gene-to-trait effects. We illustrate the power of PTWAS by analyzing the eQTL data across 49 tissues from GTEx (v8) and GWAS summary statistics from 114 complex traits.


2020 ◽  
Author(s):  
Shadi Zabad ◽  
Aaron P. Ragsdale ◽  
Rosie Sun ◽  
Yue Li ◽  
Simon Gravel

AbstractLinkage-Disequilibrium Score Regression (LDSC) is a popular framework for analyzing GWAS summary statistics that allows for estimating SNP heritability, confounding, and functional enrichment of genetic variants with different annotations. Recent work has highlighted the influence of implicit and explicit assumptions of the model on the biological interpretation of the results. In this work, we explored a formulation of LDSC that replaces the r2 measure of LD with a recently-proposed unbiased estimator of the D2 statistic. In addition to modest statistical difference across estimators, this derivation highlighted implicit and unrealistic assumptions about the relationship between allele frequency, effect size, and annotation status. We carry out a systematic comparison of alternative LDSC formulations by applying them to summary statistics from 47 GWAS traits. Our results show that commonly used models likely underestimate functional enrichment. These results highlight the importance of calibrating the LDSC model to achieve a more robust understanding of polygenic traits.


2016 ◽  
Author(s):  
Il-Youp Kwak ◽  
Wei Pan

AbstractTo identify novel genetic variants associated with complex traits and to shed new insights on underlying biology, in addition to the most popular single SNP-single trait association analysis, it would be useful to explore multiple correlated (intermediate) traits at the gene-or pathway-level by mining existing single GWAS or meta-analyzed GWAS data. For this purpose, we present an adaptive gene-based test and a pathway-based test for association analysis of multiple traits with GWAS summary statistics. The proposed tests are adaptive at both the SNP-and trait-levels; that is, they account for possibly varying association patterns (e.g. signal sparsity levels) across SNPs and traits, thus maintaining high power across a wide range of situations. Furthermore, the proposed methods are general: they can be applied to mixed types of traits, and to Z-statistics or p-values as summary statistics obtained from either a single GWAS or a meta-analysis of multiple GWAS. Our numerical studies with simulated and real data demonstrated the promising performance of the proposed methods.The methods are implemented in R package aSPU, freely and publicly available on CRAN at: https://cran.r-project.org/web/packages/aSPU/.


2019 ◽  
Author(s):  
Jialiang Gu ◽  
Chris Fuller ◽  
Jiashun Zheng ◽  
Hao Li

AbstractThe rapid accumulation of Genome Wide Association Studies (GWAS) and association studies of intermediate molecular traits provides new opportunities for comparative analysis of the genetic basis of complex human phenotypes. Using a newly developed statistical framework called Sherlock-II that integrates GWAS with eQTL (expression Quantitative Trait Loci) and metabolite-QTL data, we systematically analyzed 445 GWAS datasets, and identified 1371 significant gene-phenotype associations and 308 metabolites-phenotype associations (passing a Q value cutoff of 1/3). This integrative analysis allows us to translate SNP-phenotype associations into functionally informative gene-phenotype association profiles. Genetic similarity analyses based on these profiles clustered phenotypes into sub-trees that reveal both expected and unexpected relationships. We employed a statistical approach to delineate sets of functionally related genes that contribute to the similarity between their association profiles. This approach suggested common molecular mechanisms that connect the phenotypes in a subtree. For example, we found that fasting insulin, fasting glucose, breast cancer, prostate cancer, and lung cancer clustered into a subtree, and identified cyclic AMP/GMP signaling that connects breast cancer and insulin, NAPDH oxidase/ROS generation that connects the three cancers, and apoptosis that connects all five phenotypes. Our approach can be used to assess genetic similarity and suggest mechanistic connections between phenotypes. It has the potential to improve the diagnosis and treatment of a disease by mapping mechanistic insights from one phenotype onto others based on common molecular underpinnings.


2019 ◽  
Author(s):  
Zhongshang Yuan ◽  
Huanhuan Zhu ◽  
Ping Zeng ◽  
Sheng Yang ◽  
Shiquan Sun ◽  
...  

AbstractIntegrating association results from both genome-wide association studies (GWASs) and expression quantitative trait locus (eQTL) mapping studies has the potential to shed light on the molecular mechanisms underlying disease etiology. Several statistical methods have been recently developed to integrate GWASs with eQTL studies in the form of transcriptome-wide association studies (TWASs). These existing methods can all be viewed as a form of two sample Mendelian randomization (MR) analysis, which has been widely applied in various GWASs for inferring the causal relationship among complex traits. Unfortunately, most existing TWAS and MR methods make an unrealistic modeling assumption and assume that instrumental variables do not exhibit horizontal pleiotropic effects. However, horizontal pleiotropic effects have been recently discovered to be wide spread across complex traits, and, as we will show here, are also wide spread across gene expression traits. Therefore, not allowing for horizontal pleiotropic effects can be overly restrictive, and, as we will be show here, can lead to a substantial inflation of test statistics and subsequently false discoveries in TWAS applications. Here, we present a probabilistic MR method, which we refer to as PMR-Egger, for testing and controlling for horizontal pleiotropic effects in TWAS applications. PMR-Egger relies on an MR likelihood framework that unifies many existing TWAS and MR methods, accommodates multiple correlated instruments, tests the causal effect of gene on trait in the presence of horizontal pleiotropy, and, with a newly developed parameter expansion version of the expectation maximization algorithm, is scalable to hundreds of thousands of individuals. With extensive simulations, we show that PMR-Egger provides calibrated type I error control for causal effect testing in the presence of horizontal pleiotropic effects, is reasonably robust for various types of horizontal pleiotropic effect mis-specifications, is more powerful than existing MR approaches, and, as a by-product, can directly test for horizontal pleiotropy. We illustrate the benefits of PMR-Egger in applications to 39 diseases and complex traits obtained from three GWASs including the UK Biobank. In these applications, we show how PMR-Egger can lead to new biological discoveries through integrative analysis.


2016 ◽  
Author(s):  
Steven Gazal ◽  
Hilary K. Finucane ◽  
Nicholas A Furlotte ◽  
Po-Ru Loh ◽  
Pier Francesco Palamara ◽  
...  

AbstractRecent work has hinted at the linkage disequilibrium (LD) dependent architecture of human complex traits, where SNPs with low levels of LD (LLD) have larger per-SNP heritability after conditioning on their minor allele frequency (MAF). However, this has not been formally assessed, quantified or biologically interpreted. Here, we analyzed summary statistics from 56 complex diseases and traits (average N = 101,401) by extending stratified LD score regression to continuous annotations. We determined that SNPs with low LLD have significantly larger per-SNP heritability. Roughly half of the LLD signal can be explained by functional annotations that are negatively correlated with LLD, such as DNase I hypersensitivity sites (DHS). The remaining signal is largely driven by our finding that common variants that are more recent tend to have lower LLD and to explain more heritability (P = 2.38 × 10−104); the youngest 20% of common SNPs explain 3.9x more heritability than the oldest 20%, consistent with the action of negative selection. We also inferred jointly significant effects of other LD-related annotations and confirmed via forward simulations that these annotations jointly predict deleterious effects. Our results are consistent with the action of negative selection on deleterious variants that affect complex traits, complementing efforts to learn about negative selection by analyzing much smaller rare variant data sets.


2021 ◽  
Author(s):  
Nadezhda M Belonogova ◽  
Gulnara R Svishcheva ◽  
Anatoly V Kirichenko ◽  
Yakov A Tsepilov ◽  
Tatiana I Axenovich

Gene-based association analysis is an effective gene mapping tool. Many gene-based methods have been proposed recently. However, their power depends on the underlying genetic architecture, which is rarely known in complex traits, and so it is likely that a combination of such methods could serve as a universal approach. Several frameworks combining different gene-based methods have been developed. However, they all imply a fixed set of methods, weights and functional annotations. Moreover, most of them use individual phenotypes and genotypes as input data. Here, we introduce sumSTAAR, a framework for gene-based association analysis using summary statistics obtained from genome-wide association studies (GWAS). It is an extended and modified version of STAAR framework proposed by Li and colleagues in 2020. The sumSTAAR framework offers a wider range of gene-based methods to combine. It allows the user to arbitrarily define a set of these methods, weighting functions and probabilities of genetic variants being causal. The methods used in the framework were adapted to analyse genes with large number of SNPs to decrease the running time. The framework includes the polygene pruning procedure to guard against the influence of the strong GWAS signals outside the gene. We also present new improved matrices of correlations between the genotypes of variants within genes. These matrices estimated on a sample of 265,000 individuals are a state-of-the-art replacement of widely used matrices based on the 1000 Genomes Project data.


2019 ◽  
Author(s):  
Gabriel Cuellar-Partida ◽  
Mischa Lundberg ◽  
Pik Fang Kho ◽  
Shannon D’Urso ◽  
Luis F. Gutierrez-Mondragon ◽  
...  

AbstractBackgroundGenome-wide association studies (GWAS) are an important method for mapping genetic variation underlying complex traits and diseases. Tools to visualize, annotate and analyse results from these studies can be used to generate hypotheses about the molecular mechanisms underlying the associations.FindingsThe Complex-Traits Genetics Virtual Lab (CTG-VL) integrates over a thousand publicly-available GWAS summary statistics, a suite of analysis tools, visualization functions and diverse data sets for genomic annotations. CTG-VL also makes available results from gene, pathway and tissue-based analyses from over 1,500 complex-traits allowing to assess pleiotropy not only at the genetic variant level but also at the gene, pathway and tissue levels. In this manuscript, we showcase the platform by analysing GWAS summary statistics of mood swings derived from UK Biobank. Using analysis tools in CTG-VL we highlight hippocampus as a potential tissue involved in mood swings, and that pathways including neuron apoptotic process may underlie the genetic associations. Further, we report a negative genetic correlation with educational attainment rG = −0.41 ± 0.018 and a potential causal effect of BMI on mood swings OR = 1.01 (95% CI = 1.00–1.02). Using CTG-VL’s database, we show that pathways and tissues associated with mood swings are also associated with neurological traits including reaction time and neuroticism, as well as traits such age at menopause and age at first live birth.ConclusionsCTG-VL is a platform with the most complete set of tools to carry out post-GWAS analyses. The CTG-VL is freely available at https://genoma.io as an online web application.


Genetics ◽  
2001 ◽  
Vol 157 (2) ◽  
pp. 899-909
Author(s):  
Rongling Wu ◽  
Zhao-Bang Zeng

Abstract A new strategy for studying the genome structure and organization of natural populations is proposed on the basis of a combined analysis of linkage and linkage disequilibrium using known polymorphic markers. This strategy exploits a random sample drawn from a panmictic natural population and the open-pollinated progeny of the sample. It is established on the principle of gene transmission from the parental to progeny generation during which the linkage between different markers is broken down due to meiotic recombination. The strategy has power to simultaneously capture the information about the linkage of the markers (as measured by recombination fraction) and the degree of their linkage disequilibrium created at a historic time. Simulation studies indicate that the statistical method implemented by the Fisher-scoring algorithm can provide accurate and precise estimates for the allele frequencies, recombination fractions, and linkage disequilibria between different markers. The strategy has great implications for constructing a dense linkage disequilibrium map that can facilitate the identification and positional cloning of the genes underlying both simple and complex traits.


Sign in / Sign up

Export Citation Format

Share Document