scholarly journals Inter-joint and temporal coordination change in very slow walking

2019 ◽  
Author(s):  
Virginia L. Little ◽  
Theresa E. McGuirk ◽  
Carolynn Patten

AbstractPurposeVery slow walking has been suggested to be a distinctively different motor behavior than walking at comfortable gait speeds. While kinematic and spatiotemporal gait parameters are known to scale with gait speed, inter-joint coordination during swing remains consistent, at least across comfortable speeds. The purpose of this study was to determine whether coordination patterns serving limb clearance and shortening differ with very slow walking, providing additional support for the premise that very slow walking represents a unique motor behavior.MethodsWe assessed nine healthy adults walking overground at their self-selected speed and two-to-three progressively slower speeds. We collected lower extremity kinematics with 3D motion analysis and quantified joint motion contributions to limb clearance and shortening. We investigated changes in coordination using linear mixed models to determine magnitude and timing differences of joint influence across walking speeds.ResultsHip and knee influences serving limb clearance reduced considerably with slower walking speeds. Similarly, knee influence on limb shortening reduced with very slow walking. Importantly, ankle influence remained unchanged across gait speeds for limb shortening and reduced subtly for limb clearance. Temporally, joint influences on limb clearance varied across walking speeds. Specifically, the temporal order of peak hip and knee influences reversed between comfortable and very slow walking. For limb shortening the timing of ankle influence remained unchanged while the timing of knee influence occurred later in the gait cycle for slower walking speeds.ConclusionsOur results demonstrate temporal coordination and the relative joint contributions serving limb clearance and shortening differ with very slow walking providing additional evidence that slow walking may be a behavior distinct from walking at comfortable speeds.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Beth A. Smith ◽  
Masayoshi Kubo ◽  
Beverly D. Ulrich

The combined effects of ligamentous laxity, hypotonia, and decrements associated with aging lead to stability-enhancing foot placement adaptations during routine overground walking at a younger age in adults with Down syndrome (DS) compared to their peers with typical development (TD). Our purpose here was to examine real-time adaptations in older adults with DS by testing their responses to walking on a treadmill at their preferred speed and at speeds slower and faster than preferred. We found that older adults with DS were able to adapt their gait to slower and faster than preferred treadmill speeds; however, they maintained their stability-enhancing foot placements at all speeds compared to their peers with TD. All adults adapted their gait patterns similarly in response to faster and slower than preferred treadmill-walking speeds. They increased stride frequency and stride length, maintained step width, and decreased percent stance as treadmill speed increased. Older adults with DS, however, adjusted their stride frequencies significantly less than their peers with TD. Our results show that older adults with DS have the capacity to adapt their gait parameters in response to different walking speeds while also supporting the need for intervention to increase gait stability.


2019 ◽  
Vol 237 (11) ◽  
pp. 2973-2982
Author(s):  
Virginia L. Little ◽  
Theresa E. McGuirk ◽  
Carolynn Patten

2019 ◽  
Vol 90 (8) ◽  
pp. 913-919 ◽  
Author(s):  
Ryan Roemmich ◽  
Jaimie A Roper ◽  
Robert S Eisinger ◽  
Jackson N Cagle ◽  
Lauren Maine ◽  
...  

ObjectiveTo investigate the effects of unilateral thalamic deep brain stimulation (DBS) on walking in persons with medication-refractory essential tremor (ET).MethodsWe performed laboratory-based gait analyses on 24 persons with medication-refractory ET before and after unilateral thalamic DBS implantation. Normal and tandem walking parameters were analysed across sessions (PRE-DBS/DBS OFF/DBS ON) by repeated measures analyses of variance. Pearson’s correlations assessed whether changes in walking after DBS were global (ie, related across gait parameters). Baseline characteristics, lead locations and stimulation parameters were analysed as possible contributors to gait effects.ResultsDBS minimally affected gait at the cohort level. However, 25% of participants experienced clinically meaningful gait worsening. Walking speed decreased by >30% in two participants and by >10% in four others. Decreased walking speed correlated with increased gait variability, indicating global gait worsening in affected participants. The worsening persisted even after the stimulation was turned off. Participants with worse baseline tandem walking performance may be more likely to experience post-DBS gait worsening; the percentage of tandem missteps at baseline was nearly three times higher and tandem walking speeds were approximately 30% slower in participants who experienced gait worsening. However, these differences in tandem walking in persons with gait worsening as compared with those without worsening were not statistically significant. Lead locations and stimulation parameters were similar in participants with and without gait worsening.ConclusionGlobal gait worsening occurred in 25% of participants with unilateral DBS for medication-refractory ET. The effect was present on and off stimulation, likely indicating a microlesion effect.


Author(s):  
Gwendolyn M. Bryan ◽  
Patrick W. Franks ◽  
Seungmoon Song ◽  
Alexandra S. Voloshina ◽  
Ricardo Reyes ◽  
...  

Abstract Background Autonomous exoskeletons will need to be useful at a variety of walking speeds, but it is unclear how optimal hip–knee–ankle exoskeleton assistance should change with speed. Biological joint moments tend to increase with speed, and in some cases, optimized ankle exoskeleton torques follow a similar trend. Ideal hip–knee–ankle exoskeleton torque may also increase with speed. The purpose of this study was to characterize the relationship between walking speed, optimal hip–knee–ankle exoskeleton assistance, and the benefits to metabolic energy cost. Methods We optimized hip–knee–ankle exoskeleton assistance to reduce metabolic cost for three able-bodied participants walking at 1.0 m/s, 1.25 m/s and 1.5 m/s. We measured metabolic cost, muscle activity, exoskeleton assistance and kinematics. We performed Friedman’s tests to analyze trends across walking speeds and paired t-tests to determine if changes from the unassisted conditions to the assisted conditions were significant. Results Exoskeleton assistance reduced the metabolic cost of walking compared to wearing the exoskeleton with no torque applied by 26%, 47% and 50% at 1.0, 1.25 and 1.5 m/s, respectively. For all three participants, optimized exoskeleton ankle torque was the smallest for slow walking, while hip and knee torque changed slightly with speed in ways that varied across participants. Total applied positive power increased with speed for all three participants, largely due to increased joint velocities, which consistently increased with speed. Conclusions Exoskeleton assistance is effective at a range of speeds and is most effective at medium and fast walking speeds. Exoskeleton assistance was less effective for slow walking, which may explain the limited success in reducing metabolic cost for patient populations through exoskeleton assistance. Exoskeleton designers may have more success when targeting activities and groups with faster walking speeds. Speed-related changes in optimized exoskeleton assistance varied by participant, indicating either the benefit of participant-specific tuning or that a wide variety of torque profiles are similarly effective.


2021 ◽  
Author(s):  
Gwendolyn M Bryan ◽  
Patrick W. Franks ◽  
Seungmoon Song ◽  
Alexandra S Voloshina ◽  
Ricardo Reyes ◽  
...  

Background: Effective autonomous exoskeletons will need to be useful at a variety of walking speeds, but we do not know how optimal exoskeleton assistance should change with speed. Optimal exoskeleton assistance may increase with speed similar to biological torque changes or a well-tuned assistance profile may be effective at a variety of speeds. Methods: We optimized hip-knee-ankle exoskeleton assistance to reduce metabolic cost for three participants walking at 1.0 m/s, 1.25 m/s and 1.5 m/s. We measured metabolic cost, muscle activity, exoskeleton assistance and kinematics. We performed two tailed paired t-tests to determine significance. Results: Exoskeleton assistance reduced the metabolic cost of walking compared to wearing the exoskeleton with no torque applied by 26%, 47% and 50% at 1.0, 1.25 and 1.5 m/s, respectively. For all three participants, optimized exoskeleton ankle torque was the smallest for slow walking, while hip and knee torque changed slightly with speed in ways that varied across participants. Total applied positive power increased with speed for all three participants, largely due to increased joint velocities, which consistently increased with speed. Conclusions: Exoskeleton assistance is effective at a range of speeds and is most effective at medium and fast walking speeds. Exoskeleton assistance was less effective for slow walking, which may explain the limited success in reducing metabolic cost for patient populations through exoskeleton assistance. Exoskeleton designers may have more success when targeting activities and groups with faster walking speeds. Speed-related changes in optimized exoskeleton assistance varied by participant, indicating either the benefit of participant-specific tuning or that a wide variety of torque profiles are similarly effective.


2013 ◽  
Author(s):  
Fabrice MEGROT ◽  
Carole MEGROT

The aim of the present study was to determine whether or not walking speed affects temporal perception. It was hypothesized that fast walking would reduce the perceived length of time while slow walking increase production estimates. 16 healthy subjects were included. After a first « calibration » phase allowing the determination of different walking speeds, the subjects were instructed to demonstrate periods of time or « target times » of 3s and 7s, by a walking movement. Then, subjects were asked to simulate walking by raising one foot after the other without advancing. Finally, a third condition, Motionless, involved producing the target times while standing without movement. The results of this study suggest that movement does influence the perception of time, causing an overestimation of time. In agreement with the results of Denner et al. (1963) the subjects produced times which were longer than the target times.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7891
Author(s):  
Shilpa Jacob ◽  
Geoff Fernie ◽  
Atena Roshan Fekr

Trip-related falls are one of the major causes of injury among seniors in Canada and can be attributable to an inadequate Minimum Toe Clearance (MTC). Currently, motion capture systems are the gold standard for measuring MTC; however, they are expensive and have a restricted operating area. In this paper, a novel wearable system is proposed that can estimate different foot clearance parameters accurately using only two Time-of-Flight (ToF) sensors located at the toe and heel of the shoe. A small-scale preliminary study was conducted to investigate the feasibility of foot clearance estimation using the proposed wearable system. We recruited ten young, healthy females to walk at three self-selected speeds (normal, slow, and fast) while wearing the system. Our data analysis showed an average correlation coefficient of 0.94, 0.94, 0.92 for the normal, slow, and fast speed, respectively, when comparing the ToF signals with motion capture. The ANOVA analysis confirmed these results further by revealing no statistically significant differences between the ToF signals and motion capture data for most of the gait parameters after applying the newly proposed foot angle and offset compensation. In addition, the proposed system can measure the MTC with an average Mean Error (ME) of −0.08 ± 3.69 mm, −0.12 ± 4.25 mm, and −0.10 ± 6.57 mm for normal, slow, and fast walking speeds, respectively. The proposed affordable wearable system has the potential to perform real-time MTC estimation and contribute to future work focused on minimizing tripping risks.


1979 ◽  
Vol 78 (1) ◽  
pp. 233-243 ◽  
Author(s):  
CARL P. SPIRITO ◽  
DANIEL L. MUSHRUSH

In this study, interlimb coordination in the cockroach during slow walking (2–7 steps/s) is described for a variety of substrate conditions. During normal free-walking, the animal utilizes an alternating tripod gait (both ipsilateral and contralateral phase close to 0.50). The protraction/retraction ratio varies linearly with walking speed. When tethered on a supported ball, the ipsilateral phase ranges from 0.32 to 0.46 at walking speeds of 2-7 steps/s, and contralateral phase is constant at 0.53. Protraction/retraction ratios are normal in this case. Blind free-walking animals use a gait which is indistinguishable from normal, but the protraction/retraction ratio is constant over speeds of 2-7 steps/s. When walking down an inclined plane (45°), the gait resembles ball-walking, with an average ipsilateral phase of 0.43 and contralateral phase of 0.53. These alterations of gait under different substrate conditions can be related to the animal's responses to loading, gravity, and steering control system.


2018 ◽  
Vol 125 (2) ◽  
pp. 642-653 ◽  
Author(s):  
A. H. Dewolf ◽  
Y. Ivanenko ◽  
K. E. Zelik ◽  
F. Lacquaniti ◽  
P. A. Willems

During walking, the elevation angles of the thigh, shank, and foot (i.e., the angle between the segment and the vertical) covary along a characteristic loop constrained on a plane. Here, we investigate how the shape of the loop and the orientation of the plane, which reflect the intersegmental coordination, change with the slope of the terrain and the speed of progression. Ten subjects walked on an inclined treadmill at different slopes (between −9° and +9°) and speeds (from 0.56 to 2.22 m/s). A principal component analysis was performed on the covariance matrix of the thigh, shank, and foot elevation angles. At each slope and speed, the variance accounted for by the two principal components was >99%, indicating that the planar covariation is maintained. The two principal components can be associated to the limb orientation (PC1*) and the limb length (PC2*). At low walking speeds, changes in the intersegmental coordination across slopes are characterized mainly by a change in the orientation of the covariation plane and in PC2* and to a lesser extent, by a change in PC1*. As speed increases, changes in the intersegmental coordination across slopes are more related to a change in PC1 *, with limited changes in the orientation of the plane and in PC 2*. Our results show that the kinematic patterns highly depend on both slope and speed. NEW & NOTEWORTHY In this paper, changes in the lower-limb intersegmental coordination during walking with slope and speed are linked to changes in the trajectory of the body center of mass. Modifications in the kinematic pattern with slope depend on speed: at slow speeds, the net vertical displacement of the body during each step is related to changes in limb length and orientation. When speed increases, the vertical displacement is mostly related to a change in limb orientation.


Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1481
Author(s):  
Ana Paula J. Zanardi ◽  
Flávia G. Martinez ◽  
Edson S. da Silva ◽  
Marcela Z. Casal ◽  
Valéria F. Martins ◽  
...  

Individuals with Parkinson’s disease (PD) have gait asymmetries, and exercise therapy may reduce the differences between more and less affected limbs. The Nordic walking (NW) training may contribute to reducing the asymmetry in upper and lower limb movements in people with PD. We compared the effects of 11 weeks of NW aerobic training on asymmetrical variables of gait in subjects with mild PD. Fourteen subjects with idiopathic PD, age: 66.8 ± 9.6 years, and Hoehn and Yard stage of 1.5 points were enrolled. The kinematic analysis was performed pre and post-intervention. Data were collected at two randomized walking speeds (0.28 m·s−1 and 0.83 m·s−1) during five minutes on the treadmill without poles. The more affected and less affected body side symmetries (threshold at 5% between sides) of angular kinematics and spatiotemporal gait parameters were calculated. We used Generalized Estimating Equations with Bonferroni post hoc (α = 0.05). Maximal flexion of the knee (p = 0.007) and maximal abduction of the hip (p = 0.041) were asymmetrical pre and became symmetrical post NW intervention. The differences occurred in the knee was less affected and the hip was more affected. We concluded that 11 weeks of NW training promoted similarities in gait parameters and improved knee and hip angular parameters for PD subjects.


Sign in / Sign up

Export Citation Format

Share Document