scholarly journals Computational prediction and analysis of very high risk single nucleotide polymorphisms in human cytochrome P450 oxidoreductase gene

2019 ◽  
Author(s):  
Dhas D Benet Bosco ◽  
K Rajalakshmi ◽  
S Suganya ◽  
P Pavani ◽  
K Yaswanth

ABSTRACTCytochrome P450 oxidoreductase (POR) is a highly polymorphic gene which is involved in metabolism of drugs and steroids through transfer of electron from NADPH to all CYP enzymes. In this study, we attempt to identify the very high risk single nucleotide polymorphisms in POR gene that would affect phenotype of the enzyme. The genetic variants in POR gene were retrieved from databases and analyzed with appropriate online computation tools. Very high risk non-synonymous SNPs were identified with 12 different sequence and structure homology based tools and evolutionary conservation tool (Consurf). Further the phenotype effect of the variant was assessed with MutPred2 and LigPlot. The very high risk non-coding variants were predicted with HaploReg V4 and RegulomeDB tools. The very high risk SNPs that may affect miRNA target sites were screened using PolymiRTs v3.0, miRNA SNP v2.0 and MirSNP. Among 4,601 variants in POR gene, 58 missense variants, 8 non-coding variants and three SNPs in miRNA target sites were found to be very high risk. These very high risk variants may regulate the expression and activity of cytochrome P450 oxidoreductase enzyme leading to differential drug and steroid metabolism by CYP enzymes.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Goutam Mukherjee ◽  
Prajwal P. Nandekar ◽  
Rebecca C. Wade

AbstractCytochrome P450 (CYP) heme monooxygenases require two electrons for their catalytic cycle. For mammalian microsomal CYPs, key enzymes for xenobiotic metabolism and steroidogenesis and important drug targets and biocatalysts, the electrons are transferred by NADPH-cytochrome P450 oxidoreductase (CPR). No structure of a mammalian CYP–CPR complex has been solved experimentally, hindering understanding of the determinants of electron transfer (ET), which is often rate-limiting for CYP reactions. Here, we investigated the interactions between membrane-bound CYP 1A1, an antitumor drug target, and CPR by a multiresolution computational approach. We find that upon binding to CPR, the CYP 1A1 catalytic domain becomes less embedded in the membrane and reorients, indicating that CPR may affect ligand passage to the CYP active site. Despite the constraints imposed by membrane binding, we identify several arrangements of CPR around CYP 1A1 that are compatible with ET. In the complexes, the interactions of the CPR FMN domain with the proximal side of CYP 1A1 are supplemented by more transient interactions of the CPR NADP domain with the distal side of CYP 1A1. Computed ET rates and pathways agree well with available experimental data and suggest why the CYP–CPR ET rates are low compared to those of soluble bacterial CYPs.


2018 ◽  
Vol 47 (4) ◽  
pp. 1604-1616 ◽  
Author(s):  
Yan Fang ◽  
Na Gao ◽  
Xin Tian ◽  
Jun Zhou ◽  
Hai-Feng Zhang ◽  
...  

Background/ Aims: Little is known about the effect of P450 oxidoreductase (POR) gene polymorphisms on the activities of CYPs with multiple genotypes. Methods: We genotyped 102 human livers for 18 known POR single nucleotide polymorphisms (SNPs) with allelic frequencies greater than 1% as well as for 27 known SNPs in 10 CYPs. CYP enzyme activities in microsomes prepared from these livers were determined by measuring probe substrate metabolism by high performance liquid chromatograph. Results: We found that the effects of the 18 POR SNPs on 10 CYP activities were CYP genotype-dependent. The POR mutations were significantly associated with decreased overall Km for CYP2B6 and 2E1, and specific genotypes within CYP1A2, 2A6, 2B6, 2C8, 2D6 and 2E1 were identified as being affected by these POR SNPs. Notably, the effect of a specific POR mutation on the activity of a CYP genotype could not be predicted from other CYP genotypes of even the same CYP. When combining one POR SNP with other POR SNPs, a hitherto unrecognized effect of multiple-site POR gene polymorphisms (MSGP) on CYP activity was uncovered, which was not necessarily consistent with the effect of either single POR SNP. Conclusions: The effects of POR SNPs on CYP activities were not only CYP-dependent, but more importantly, CYP genotype-dependent. Moreover, the effect of a POR SNP alone and in combination with other POR SNPs (MSGP) was not always consistent, nor predictable. Understanding the impact of POR gene polymorphisms on drug metabolism necessitates knowing the complete SNP complement of POR and the genotype of the relevant CYPs.


Blood ◽  
2008 ◽  
Vol 112 (7) ◽  
pp. 2709-2712 ◽  
Author(s):  
Maria E. Sarasquete ◽  
Ramon García-Sanz ◽  
Luis Marín ◽  
Miguel Alcoceba ◽  
Maria C. Chillón ◽  
...  

Abstract We have explored the potential role of genetics in the development of osteonecrosis of the jaw (ONJ) in multiple myeloma (MM) patients under bisphosphonate therapy. A genome-wide association study was performed using 500 568 single nucleotide polymorphisms (SNPs) in 2 series of homogeneously treated MM patients, one with ONJ (22 MM cases) and another without ONJ (65 matched MM controls). Four SNPs (rs1934951, rs1934980, rs1341162, and rs17110453) mapped within the cytochrome P450-2C gene (CYP2C8) showed a different distribution between cases and controls with statistically significant differences (P = 1.07 × 10−6, P = 4.231 × 10−6, P = 6.22 × 10−6, and P = 2.15 × 10−6, respectively). SNP rs1934951 was significantly associated with a higher risk of ONJ development even after Bonferroni correction (P corrected value = .02). Genotyping results displayed an overrepresentation of the T allele in cases compared with controls (48% vs 12%). Thus, individuals homozygous for the T allele had an increased likelihood of developing ONJ (odds ratio 12.75, 95% confidence interval 3.7-43.5).


2021 ◽  
Vol 12 ◽  
Author(s):  
Pengfei Xu ◽  
Yantao Zhu ◽  
Yanfeng Zhang ◽  
Jianxia Jiang ◽  
Liyong Yang ◽  
...  

MicroRNAs (miRNAs) and their target genes play vital roles in crops. However, the genetic variations in miRNA-targeted sites that affect miRNA cleavage efficiency and their correlations with agronomic traits in crops remain unexplored. On the basis of a genome-wide DNA re-sequencing of 210 elite rapeseed (Brassica napus) accessions, we identified the single nucleotide polymorphisms (SNPs) and insertions/deletions (INDELs) in miRNA-targeted sites complementary to miRNAs. Variant calling revealed 7.14 million SNPs and 2.89 million INDELs throughout the genomes of 210 rapeseed accessions. Furthermore, we detected 330 SNPs and 79 INDELs in 357 miRNA target sites, of which 33.50% were rare variants. We also analyzed the correlation between the genetic variations in miRNA target sites and 12 rapeseed agronomic traits. Eleven SNPs in miRNA target sites were significantly correlated with phenotypes in three consecutive years. More specifically, three correlated SNPs within the miRNA-binding regions of BnSPL9-3, BnSPL13-2, and BnCUC1-2 were in the loci associated with the branch angle, seed weight, and silique number, respectively; expression profiling suggested that the variation at these 3 miRNA target sites significantly affected the expression level of the corresponding target genes. Taken together, the results of this study provide researchers and breeders with a global view of the genetic variations in miRNA-targeted sites in rapeseed and reveal the potential effects of these genetic variations on elite agronomic traits.


Sign in / Sign up

Export Citation Format

Share Document