scholarly journals Establishing insect community composition using metabarcoding of soil samples, and preservative ethanol and homogenate from Malaise trap catches: surprising inconsistencies between methods

2019 ◽  
Author(s):  
Daniel Marquina ◽  
Rodrigo Esparza-Salas ◽  
Tomas Roslin ◽  
Fredrik Ronquist

AbstractDNA metabarcoding allows the analysis of insect communities faster and more efficiently than ever before. However, metabarcoding can be conducted through several alternative approaches, and the consistency of results across methods has rarely been studied. We compare the results obtained by DNA metabarcoding of the same communities using two different markers – COI and 16S – and three different sampling methods – homogenized Malaise trap samples (homogenate), preservative ethanol from the same samples, and soil samples. Our results indicate that COI and 16S offer partly complementary information on Malaise trap samples, with each marker detecting a significant number of species not detected by the other. Different sampling methods offer highly divergent estimates of community composition. The community recovered from preservative ethanol of Malaise trap samples is quite distinct from that recovered from homogenate. Small and weakly sclerotized insects tend to be overrepresented in ethanol, with some exceptions that could be related to taxon-specific traits. For soil samples, highly degenerate COI primers pick up large amounts of non-target DNA and only 16S provides adequate analyses of insect diversity. However, even with 16S, very little overlap in MOTU content was found between the trap and the soil samples. Our results demonstrate that no metabarcoding approach is all-comprehensive in itself. For instance, DNA extraction from preservative ethanol is not a valid replacement for destructive bulk extraction but a complement. In future metabarcoding studies, both should ideally be used together to achieve comprehensive representation of the target community.

2018 ◽  
Author(s):  
Yasuhiro Sato ◽  
Rie Shimizu-Inatsugi ◽  
Misako Yamazaki ◽  
Kentaro K. Shimizu ◽  
Atsushi J. Nagano

AbstractBackground: Genetic variation in plants alters insect abundance and community structure in the field; however, little is known about the importance of a single gene among diverse plant genotypes. In this context, Arabidopsis trichomes provide an excellent system to discern the roles of natural variation and a key gene, GLABRA1, in shaping insect communities. In this study, we transplanted two independent glabrous mutants (gl1-1 and gl1-2) and 17 natural accessions of Arabidopsis thaliana to two localities in Switzerland and Japan.Results: Fifteen insect species inhabited plant accessions, with 10–30% broad-sense heritability of community indices being detected, such as species richness and diversity. The total abundance of leaf-chewing herbivores was negatively correlated with trichome density at both the field sites, while glucosinolates had variable effects on leaf chewers between the two sites. Interestingly, there was a parallel tendency for the abundance of leaf chewers to be higher on gl1-1 and gl1-2 than for their different parental accessions, Ler-1 and Col-0, respectively. Furthermore, the loss of function in the GLABRA1 gene significantly decreased the resistance of plants to the two predominant chewers, flea beetles and turnip sawflies.Conclusions: Overall, our results indicate that insect community composition on A. thaliana is heritable across two distant field sites, with GLABRA1 playing a key role in altering the abundance of leaf-chewing herbivores. Given that such a trichome variation is widely observed in Brassicaceae plants, the present study exemplifies the community-wide impact of a single plant gene on crucifer-feeding insects in the field.


2020 ◽  
Vol 4 ◽  
Author(s):  
Yves Basset ◽  
David A. Donoso ◽  
Mehrdad Hajibabaei ◽  
Michael T. G. Wright ◽  
Kate H. J. Perez ◽  
...  

Robust data to refute or support claims of global insect decline are currently lacking, particularly for the soil fauna in the tropics. DNA metabarcoding represents a powerful approach for rigorous spatial and temporal monitoring of the taxonomically challenging soil fauna. Here, we provide a detailed field protocol, which was successfully applied in Barro Colorado Island (BCI) in Panama, to collect soil samples and arthropods in a tropical rainforest, to be later processed with metabarcoding. We also estimate the proportion of soil/litter ant, springtail and termite species from the local fauna that can be detected by metabarcoding samples obtained either from Berlese-Tullgren (soil samples), Malaise or light traps. Each collecting method detected a rather distinct fauna. Soil and Malaise trap samples detected 213 species (73%) of all target species. Malaise trap samples detected many ant species, whereas soil samples were more efficient at detecting springtail and termite species. With respect to long-term monitoring of soil-dwelling and common species (more amenable to statistical trends), the best combination of two methods were soil and light trap samples, detecting 94% of the total of common species. A protocol including 100 soil, 40 Malaise and 80 light trap samples annually processed by metabarcoding would allow the long-term monitoring of at least 11%, 18% and 16% of species of soil/litter ants, springtails and termites, respectively, present on BCI, and a high proportion of the total abundance (up to 80% of all individuals) represented by these taxa.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1124
Author(s):  
Yu Fukasawa

Dead wood is an important habitat for both fungi and insects, two enormously diverse groups that contribute to forest biodiversity. Unlike the myriad of studies on fungus–insect relationships, insect communities on ascomycete sporocarps are less explored, particularly for those in hidden habitats such as underneath bark. Here, I present my observations of insect community dynamics on Biscogniauxia spp. on oak dead wood from the early anamorphic stage to matured teleomorph stage, aided by the debarking behaviour of squirrels probably targeting on these fungi. In total, 38 insect taxa were observed on Biscogniauxia spp. from March to November. The community composition was significantly correlated with the presence/absence of Biscogniauxia spp. Additionally, Librodor (Glischrochilus) ipsoides, Laemophloeus submonilis, and Neuroctenus castaneus were frequently recorded and closely associated with Biscogniauxia spp. along its change from anamorph to teleomorph. L. submonilis was positively associated with both the anamorph and teleomorph stages. L. ipsoides and N. castaneus were positively associated with only the teleomorph but not with the anamorph stage. N. castaneus reproduced and was found on Biscogniauxia spp. from June to November. These results suggest that sporocarps of Biscogniauxia spp. are important to these insect taxa, depending on their developmental stage.


2021 ◽  
Author(s):  
Janey R. Lienau ◽  
Robert W. Buchkowski ◽  
Meghan G. Midgley

Abstract Purpose: Soil insects mediate plant-soil interactions by fragmenting and decomposing litter that forms the base of soil food webs and through predator-prey interactions. Plant communities, in turn, shape soil insect communities via the quality, availability, and diversity of their litters. However, these drivers have rarely been examined in concert even though describing soil insect community patterns is critical for mitigating the effects of global environmental changes. Methods: Here, we evaluated the effects of tree diversity, density, and functional groups on ground beetle (Carabidae) diversity, density, and community composition in four eastern temperate forest sites in the National Ecological Observatory Network. Results Though we expected that higher tree diversity and density would, respectively, lead to higher diversity and density ground beetle communities, we found little evidence to support this hypothesis. Instead, evergreen tree abundance strongly shaped ground beetle diversity, density, and community composition. Specifically, evergreen plots as defined by National Land Cover Database hosted lower density ground beetle communities than deciduous plots. Similarly, ground beetle Shannon diversity and density decreased as the relative abundance of evergreen tree species increased. Conclusions: Although further study is needed to explicitly link litter quality with soil insect communities, the resource environments created by trees with varying leaf habits appear to be a dominant force driving ground beetle community diversity and density patterns.


1984 ◽  
Vol 116 (2) ◽  
pp. 165-171 ◽  
Author(s):  
N. J. Holliday ◽  
E. A. C. Hagley

AbstractThe effects on carabids of natural, fescue, and rye sod types and of tillage were investigated in a pest management apple orchard. Carabids were sampled before and after the treatments by pitfall trapping and by two types of soil sampling. There were no significant effects of sod type on pitfall trap catches; however the abundance of all common species in soil samples was significantly affected by sod types. Usually in soil samples carabids were most abundant in natural sod and least abundant in tilled plots; numbers were intermediate in fescue and rye. Sod type did not affect structure or diversity of the carabid fauna.


2019 ◽  
Vol 70 (4) ◽  
pp. 541 ◽  
Author(s):  
Martha J. Zapata ◽  
S. Mažeika P. Sullivan

Variability in the density and distribution of adult aquatic insects is an important factor mediating aquatic-to-terrestrial nutritional subsidies in freshwater ecosystems, yet less is understood about insect-facilitated subsidy dynamics in estuaries. We surveyed emergent (i.e. adult) aquatic insects and nearshore orb-weaving spiders of the families Tetragnathidae and Araneidae in a subtropical estuary of Florida (USA). Emergent insect community composition varied seasonally and spatially; densities were lower at high- than low-salinity sites. At high-salinity sites, emergent insects exhibited lower dispersal ability and a higher prevalence of univoltinism than low- and mid-salinity assemblages. Orb-weaving spider density most strongly tracked emergent insect density rates at low- and mid-salinity sites. Tetragnatha body condition was 96% higher at high-salinity sites than at low-salinity sites. Our findings contribute to our understanding of aquatic insect communities in estuarine ecosystems and indicate that aquatic insects may provide important nutritional subsidies to riparian consumers despite their depressed abundance and diversity compared with freshwater ecosystems.


Author(s):  
Zhuang Wang ◽  
Lijuan Zhao ◽  
Jiaqi Liu ◽  
Yajie Yang ◽  
Juan Shi ◽  
...  

To study the effect of the invasion of Bursaphelenchus xylophilus on the functional relationship between woody plants and insect communities, the populations of tree species and insect communities were investigative in the Masson pine forests with different infestation durations of B. xylophilus. In this study, the number of Pinus massoniana began to decrease sharply, whereas the total number of other tree species in the arboreal layer increased gradually with the infestation duration of B. xylophilus. The principal component analysis ordination biplot shows that there was a significant change in the spatial distribution of woody plant species in different Masson pine forest stands. Additionally, a total of 7,188 insect specimens was obtained. The insect population showed an upward trend in stand types with the increase of pine wilt disease infection periods, which demonstrated that the insect community had been significantly affected by the invasion of B. xylophilus. The structure of insect functional groups changed from herbivorous (He) > omnivorous (Om) > predatory (Pr) > parasitic (Pa) > detritivorous (De) in the control stand to He > Pa > Om, De > Pr after B. xylophilus infestation in the forests. The results showed that the populations of He, Pa, and De increased after the invasion of B. xylophilus, but the populations of Pr decreased. Moreover, the redundancy analysis ordination bi-plots reflected the complicated functional relationship between woody plant communities and insects after the invasion of B. xylophilus. The present study provides insights into the changes in the community structure of woody plants and insects, as well as the functional relationship between woody plant communities and insect communities after invasion of B. xylophilus.


2020 ◽  
Vol 8 (1) ◽  
pp. 83 ◽  
Author(s):  
Sébastien Renaut ◽  
Rachid Daoud ◽  
Jacynthe Masse ◽  
Agathe Vialle ◽  
Mohamed Hijri

Little is known about establishment success of the arbuscular mycorrhizal fungal (AMF) inocula and their effects on a soil-indigenous community of AMF. In this study, we assessed the effect of introducing Rhizophagus irregularis DAOM-197198 in soil under field condition on the community composition of indigenous AMF in the roots of corn (Zea mays), soybean (Glycine max), and wheat (Triticum aestivum). Three field trials were conducted with inoculated and non-inoculated plots. Four to ten roots and their rhizosphere soil samples of two growth stages for corn and wheat, and one growing stage of soybean, were collected, totalling 122 root and soil samples. Root colonization was measured microscopically, and the fungal communities were determined by paired-end Illumina MiSeq amplicon sequencing using 18S rDNA marker. After quality trimming and merging of paired ends, 6.7 million sequences could be assigned to 414 different operational taxonomic units. These could be assigned to 68 virtual taxa (VT) using the AMF reference sequence database MaarjAM. The most abundant VT corresponded to R. irregularis. The inoculation treatment did not influence the presence of R. irregularis, or AMF community diversity in roots. This seems to indicate that inoculation with R. irregularis DAOM-197198 does not change the indigenous AMF community composition, probably because it is already present in high abundance naturally.


Sign in / Sign up

Export Citation Format

Share Document