scholarly journals Automated design of highly diverse riboswitches

2019 ◽  
Author(s):  
Michelle J Wu ◽  
Johan O L Andreasson ◽  
Wipapat Kladwang ◽  
William Greenleaf ◽  
Rhiju Das

AbstractRiboswitches that couple binding of ligands to recruitment of molecular machines offer sensors and control elements for RNA synthetic biology and medical biotechnology. Current approaches to riboswitch design enable significant changes in output activity in the presence vs. absence of input ligands. However, design of these riboswitches has so far required expert intuition and explicit specification of complete target secondary structures, both of which limit the structure-toggling mechanisms that have been explored. We present a fully automated method called RiboLogic for these design tasks and high-throughput experimental tests of 2,875 molecules using RNA-MaP (RNA on a massively parallel array) technology. RiboLogic designs explore an unprecedented diversity of structure-toggling mechanisms validated through experimental tests. These synthetic molecules consistently modulate their affinity to the MS2 bacteriophage coat protein upon binding of flavin mononucleotide, tryptophan, theophylline, and microRNA miR-208a, achieving activation ratios of up to 20 and significantly better performance than control designs. The data enable dissection of features of structure-toggling mechanisms that correlate with higher performance. The diversity of RiboLogic designs and their quantitative experimental characterization provides a rich resource for further improvement of riboswitch models and design methods.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3639
Author(s):  
Abdelfateh Kerrouche ◽  
Taoufik Najeh ◽  
Pablo Jaen-Sola

Railway infrastructure plays a major role in providing the most cost-effective way to transport freight and passengers. The increase in train speed, traffic growth, heavier axles, and harsh environments make railway assets susceptible to degradation and failure. Railway switches and crossings (S&C) are a key element in any railway network, providing flexible traffic for trains to switch between tracks (through or turnout direction). S&C systems have complex structures, with many components, such as crossing parts, frogs, switchblades, and point machines. Many technologies (e.g., electrical, mechanical, and electronic devices) are used to operate and control S&C. These S&C systems are subject to failures and malfunctions that can cause delays, traffic disruptions, and even deadly accidents. Suitable field-based monitoring techniques to deal with fault detection in railway S&C systems are sought after. Wear is the major cause of S&C system failures. A novel measuring method to monitor excessive wear on the frog, as part of S&C, based on fiber Bragg grating (FBG) optical fiber sensors, is discussed in this paper. The developed solution is based on FBG sensors measuring the strain profile of the frog of S&C to determine wear size. A numerical model of a 3D prototype was developed through the finite element method, to define loading testing conditions, as well as for comparison with experimental tests. The sensors were examined under periodic and controlled loading tests. Results of this pilot study, based on simulation and laboratory tests, have shown a correlation for the static load. It was shown that the results of the experimental and the numerical studies were in good agreement.


2010 ◽  
Vol 136 ◽  
pp. 153-157
Author(s):  
Yu Hong Du ◽  
Xiu Ming Jiang ◽  
Xiu Ren Li

To solve the problem of detecting the permeability of the textile machinery, a dedicated test system has been developed based on the pressure difference measuring method. The established system has a number of advantages including simple, fast and accurate. The mathematical model of influencing factors for permeability is derived based on fluid theory, and the relationship of these parameters is achieved. Further investigations are directed towards the inherent characteristics of the control system. Based on the established model and measuring features, an information fusion based clustering control system is proposed to implement the measurement. Using this mechanical structure, a PID control system and a cluster control system have been developed. Simulation and experimental tests are carried out to examine the performance of the established system. It is noted that the clustering method has a high dynamic performance and control accuracy. This cluster fusion control method has been successfully utilized in powder metallurgy collar permeability testing.


Mathematics ◽  
2018 ◽  
Vol 6 (9) ◽  
pp. 169 ◽  
Author(s):  
Helen Durand

Recent cyberattacks against industrial control systems highlight the criticality of preventing future attacks from disrupting plants economically or, more critically, from impacting plant safety. This work develops a nonlinear systems framework for understanding cyberattack-resilience of process and control designs and indicates through an analysis of three control designs how control laws can be inspected for this property. A chemical process example illustrates that control approaches intended for cyberattack prevention which seem intuitive are not cyberattack-resilient unless they meet the requirements of a nonlinear systems description of this property.


Author(s):  
Vadim V. Chernyshev ◽  
Vladimir V. Arykantsev ◽  
Andrey E. Gavrilov ◽  
Yaroslav V. Kalinin ◽  
Nikolay G. Sharonov

An important role among machines for sea bottom exploration is assigned to the autonomous ground devices. Some rescue tasks also require subsea robotic devices. The main purpose of the work is to investigate and improve adaptive characteristics, traction properties and control methods of cyclic walking movers in underwater conditions. Traction properties of walking machines, which moves at sea bottom was analyzed. Some experience of development and experimental tests of the walking robot “Vosminog”, designed for work at weak and waterlogged grounds. Dynamic model of a walking machine has been shown. Studied an opportunity to increase adaptive characteristics and shape passableness of walking machines. Also design and results of underwater tests of subsea walking unit MAK-1 are discussed. During tests the performance of a walking unit has been checked and the influence of design features of a walking mover on its traction characteristics and ground passability has been investigated. Some details about control system, power system and energy usage, vertical motions and accelerations for different types of walking and conditions of movement has been given. Also, certain attention was given to testing of methods of standalone movement control of subsea unit in conditions of incomplete and ambiguous vision of current situation. Tests have shown that walking movers in subsea conditions can provide higher traction properties, in comparison with wheeled and tracked ones. The unit can be used for exploration of seabed resources and for rescue tasks.


2019 ◽  
Vol 13 (4) ◽  
Author(s):  
Zahra Khashei Varnamkhasti ◽  
Bardia Konh

Abstract Many medical treatments such as brachytherapy, thermal ablation, and biopsy are performed using percutaneous needle-based procedures. The success of these procedures highly depends on accurate placement of the needle tip at target positions. A novel active needle was designed and developed in this work that can steer inside the tissue via a shape memory alloy (SMA) actuator attached to its body. With actuation and control offered by the actuator, the active needle can reach the target positions with more accuracy, and thereby potential improvement in clinical outcomes. An integrated system was also developed to robotically operate the active needle insertion. The performance of the active needle was evaluated with finite element methods and experimental tests on a fabricated prototype in air. Active needle insertion tests in a tissue phantom were also performed to evaluate the performance of the active needle. The deflection in air and tissue phantom demonstrated the capability of the active needle to reach target positions.


Robotica ◽  
2013 ◽  
Vol 31 (6) ◽  
pp. 887-904 ◽  
Author(s):  
M. H. Korayem ◽  
M. Bamdad ◽  
H. Tourajizadeh ◽  
A. H. Korayem ◽  
R. M. Zehtab ◽  
...  

SUMMARYIn this paper, design, dynamic, and control of the motors of a spatial cable robot are presented considering flexibility of the joints. End-effector control in order to control all six spatial degrees of freedom (DOFs) of the system and motor control in order to control the joints flexibility are proposed here. Corresponding programing of its operation is done by formulating the kinematics and dynamics and also control of the robot. Considering the existence of gearboxes, flexibility of the joints is modeled in the feed-forward term of its controller to achieve better accuracy. A two sequential closed-loop strategy consisting of proportional derivative (PD) for linear actuators in joint space and computed torque method for nonlinear end-effector in Cartesian space is presented for further accuracy. Flexibility is estimated using modeling and simulation by MATLAB and SimDesigner. A prototype has been built and experimental tests have been done to verify the efficiency of the proposed modeling and controller as well as the effect of flexibility of the joints. The ICaSbot (IUST Cable-Suspended robot) is an under-constrained six-DOF parallel robot actuated by the aid of six suspended cables. An experimental test is conducted for the manufactured flexible joint cable robot of ICaSbot and the outputs of sensors are compared with simulation. The efficiency of the proposed schemes is demonstrated.


2018 ◽  
Vol 14 (4) ◽  
pp. 54-63
Author(s):  
Saad Tami Hamidi ◽  
Jamal Abdul-Kareem Mohammed ◽  
Laith Muhsin Reda

The present work presents design and implementation of an automated two-axis solar tracking system using local materials with minimum cost, light weight and reliable structure. The tracking system consists of two parts, mechanical units (fixed and moving parts) and control units (four LDR sensors and Arduino UNO microcontroller to control two DC servomotors). The tracking system was fitted and assembled together with a parabolic trough solar concentrator (PTSC) system to move it according to information come from the sensors so as to keep the PTSC always perpendicular to sun rays. The experimental tests have been done on the PTSC system to investigate its thermal performance in two cases, with tracking system (case 1) and without tracking system (case 2). The experimental results showed that the average solar radiation falling on the PTSC prototype in the two cases during the same time was 854 and 701 watt/m2, respectively, which means an increase in the solar radiation about 21.8 % when using tracking system. It was found that the average useful heat gain output of solar collector was equal to (376.2, 252.6 watt) for the two cases, respectively, so there was an increase of about 48.9 % when using the tracking system. Also, the average thermal efficiency of the PTSC was found to be (20.7, 26.5 %) for the two cases, respectively, which means an increase in the average efficiency by 28% with use of tracking system compared to the fixed case.


Sign in / Sign up

Export Citation Format

Share Document