scholarly journals Unexpected activity of oral fosfomycin against resistant strains ofEscherichia coliin murine pyelonephritis

2019 ◽  
Author(s):  
Annabelle Pourbaix ◽  
François Guérin ◽  
Charles Burdet ◽  
Laurent Massias ◽  
Françoise Chau ◽  
...  

AbstractFosfomycin-tromethamine activity is well established for oral treatment of uncomplicated lower urinary tract infections but little is known about its potential efficacy in pyelonephritis. Ascending pyelonephritis was induced in mice infected with 6 strains ofEscherichia coli(fosfomycin MICs: 1 μg/ml to 256 μg/ml). Urine pH was 4.5 before infection and 5.5-6.0 during infection. Animals were treated for 24h with fosfomycin (100 mg/kg subcutaneously every 4 hours) and CFU were enumerated in kidneys 24h after the last fosfomycin injection. Peak (20.5 μg/ml at 1h) and trough (3.5 μg/ml at 4h) levels in plasma were comparable to those obtained in human after an oral dose of 3 grams. Fosfomycin treatment significantly reduced bacterial loads in kidneys (3.65 log10CFU/g [min-max=1.83-7.03] and 1.88 log10CFU/g [1.78-5.74] in start-of-treatment control mice and treated mice, respectively,P< 10-6). However, this effect was not found to differ across the 6 study strains (P = 0.71) and between the 3 susceptible and the 3 resistant strains (P=0.09). Three phenomena may contribute to explain this unexpectedin vivoactivity: i) in mice, fosfomycin kidney/plasma concentrations ratio increased from 1 to 7.8 (95% CI, 5.2; 10.4) within 24 hours;in vitro, when pH decreased to 5: (ii) fosfomycin MICs for the 3 resistant strains (64-256 μg/ml) decreased into the susceptible range (16-32 μg/ml) and: iii) maximal growth rates significantly decreased for all strains and were the lowest in urine. These results suggest that local fosfomycin concentrations and physiological conditions may favour fosfomycin activity in pyelonephritis, even against resistant strains.

2019 ◽  
Vol 63 (8) ◽  
Author(s):  
Annabelle Pourbaix ◽  
François Guérin ◽  
Charles Burdet ◽  
Laurent Massias ◽  
Françoise Chau ◽  
...  

ABSTRACTFosfomycin tromethamine activity is well established for oral treatment of uncomplicated lower urinary tract infections, but little is known about its potential efficacy in pyelonephritis. Ascending pyelonephritis was induced in mice infected with 6 strains ofEscherichia coli(fosfomycin MICs, 1 μg/ml to 256 μg/ml). The urine pH was 4.5 before infection and 5.5 to 6.0 during infection. Animals were treated for 24 h with fosfomycin (100 mg/kg of body weight subcutaneously every 4 h), and the CFU were enumerated in kidneys 24 h after the last fosfomycin injection. Peak (20.5 μg/ml at 1 h) and trough (3.5 μg/ml at 4 h) levels in plasma were comparable to those obtained in humans after an oral dose of 3 g. Fosfomycin treatment significantly reduced the bacterial loads in kidneys (3.65 log10CFU/g [range, 1.83 to 7.03 log10CFU/g] and 1.88 log10CFU/g [range, 1.78 to 5.74 log10CFU/g] in start-of-treatment control mice and treated mice, respectively;P < 10−6). However, this effect was not found to differ across the 6 study strains (P = 0.71) or between the 3 susceptible and the 3 resistant strains (P = 0.09). Three phenomena may contribute to explain this unexpectedin vivoactivity: (i) in mice, the fosfomycin kidney/plasma concentration ratio increased from 1 to 7.8 (95% confidence interval, 5.2, 10.4) within 24 hin vitrowhen the pH decreased to 5, (ii) the fosfomycin MICs for the 3 resistant strains (64 to 256 μg/ml) decreased into the susceptible range (16 to 32 μg/ml), and (iii) maximal growth rates significantly decreased for all strains and were the lowest in urine. These results suggest that local fosfomycin concentrations and physiological conditions may favor fosfomycin activity in pyelonephritis, even against resistant strains.


2010 ◽  
Vol 53 (24) ◽  
pp. 8627-8641 ◽  
Author(s):  
Tobias Klein ◽  
Daniela Abgottspon ◽  
Matthias Wittwer ◽  
Said Rabbani ◽  
Janno Herold ◽  
...  

2003 ◽  
Vol 47 (9) ◽  
pp. 2850-2858 ◽  
Author(s):  
Annika I. Nilsson ◽  
Otto G. Berg ◽  
Olle Aspevall ◽  
Gunnar Kahlmeter ◽  
Dan I. Andersson

ABSTRACT Fosfomycin is a cell wall inhibitor used mainly for the treatment of uncomplicated lower urinary tract infections. As shown here, resistance to fosfomycin develops rapidly in Escherichia coli under experimental conditions, but in spite of the relatively high mutation rate in vitro, resistance in clinical isolates is rare. To examine this apparent contradiction, we mathematically modeled the probability of resistance development in the bladder during treatment. The modeling showed that during a typical episode of urinary tract infection, the probability of resistance development was high (>10−2). However, if resistance was associated with a reduction in growth rate, the probability of resistance development rapidly decreased. To examine if fosfomycin resistance causes a reduced growth rate, we isolated in vitro and in vivo a set of resistant strains. We determined their resistance mechanisms and examined the effect of the different resistance mutations on bacterial growth in the absence and presence of fosfomycin. The types of mutations found in vitro and in vivo were partly different. Resistance in the mutants isolated in vitro was caused by ptsI, cyaA, glpT, uhpA/T, and unknown mutations, whereas no cyaA or ptsI mutants could be found in vivo. All mutations caused a decreased growth rate both in laboratory medium and in urine, irrespective of the absence or presence of fosfomycin. According to the mathematical model, the reduced growth rate of the resistant strains will prevent them from establishing in the bladder, which could explain why fosfomycin resistance remains rare in clinical isolates.


2015 ◽  
Vol 59 (4) ◽  
pp. 1992-1997 ◽  
Author(s):  
E. P. Garvey ◽  
W. J. Hoekstra ◽  
W. R. Moore ◽  
R. J. Schotzinger ◽  
L. Long ◽  
...  

ABSTRACTCurrent therapies used to treat dermatophytoses such as onychomycosis are effective but display room for improvement in efficacy, safety, and convenience of dosing. We report here that the investigational agent VT-1161 displays potentin vitroantifungal activity against dermatophytes, with MIC values in the range of ≤0.016 to 0.5 μg/ml. In pharmacokinetic studies supporting testing in a guinea pig model of dermatophytosis, VT-1161 plasma concentrations following single oral doses were dose proportional and persisted at or above the MIC values for at least 48 h, indicating potentialin vivoefficacy with once-daily and possibly once-weekly dosing. Subsequently, in a guinea pig dermatophytosis model utilizingTrichophyton mentagrophytesand at oral doses of 5, 10, or 25 mg/kg of body weight once daily or 70 mg/kg once weekly, VT-1161 was statistically superior to untreated controls in fungal burden reduction (P< 0.001) and improvement in clinical scores (P< 0.001). The efficacy profile of VT-1161 was equivalent to those for doses and regimens of itraconazole and terbinafine except that VT-1161 was superior to itraconazole when each drug was dosed once weekly (P< 0.05). VT-1161 was distributed into skin and hair, with plasma and tissue concentrations in all treatment and regimen groups ranging from 0.8 to 40 μg/ml (or μg/g), at or above the MIC against the isolate used in the model (0.5 μg/ml). These data strongly support the clinical development of VT-1161 for the oral treatment of onychomycosis using either once-daily or once-weekly dosing regimens.


2003 ◽  
Vol 47 (12) ◽  
pp. 3750-3759 ◽  
Author(s):  
Tsuyoshi Otani ◽  
Mayumi Tanaka ◽  
Emi Ito ◽  
Yuichi Kurosaka ◽  
Yoichi Murakami ◽  
...  

ABSTRACT The antibacterial activities of DK-507k, a novel quinolone, were compared with those of other quinolones: ciprofloxacin, gatifloxacin, levofloxacin, moxifloxacin, sitafloxacin, and garenoxacin (BMS284756). DK-507k was as active as sitafloxacin and was as active as or up to eightfold more active than gatifloxacin, moxifloxacin, and garenoxacin against Streptococcus pneumoniae, methicillin-susceptible and methicillin-resistant Staphylococcus aureus, and coagulase-negative staphylococci. DK-507k was as active as or 4-fold more active than garenoxacin and 2- to 16-fold more active than gatifloxacin and moxifloxacin against ciprofloxacin-resistant strains of S. pneumoniae, including clinical isolates and in vitro-selected mutants with known mutations. DK-507k inhibited all ciprofloxacin-resistant strains of S. pneumoniae at 1μ g/ml. A time-kill assay with S. pneumoniae showed that DK-507k was more bactericidal than gatifloxacin and moxifloxacin. The activities of DK-507k against most members of the family Enterobacteriaceae were comparable to those of ciprofloxacin and equal to or up to 32-fold higher than those of gatifloxacin, levofloxacin, moxifloxacin, and garenoxacin. DK-507k was fourfold less active than sitafloxacin and ciprofloxacin against Pseudomonas aeruginosa, while it was two to four times more potent than levofloxacin, gatifloxacin, moxifloxacin, and garenoxacin against P. aeruginosa. In vivo, intravenous treatment with DK-507k was more effective than that with gatifloxacin and moxifloxacin against systemic infections caused by S. aureus, S. pneumoniae, and P. aeruginosa in mice. In a mouse model of pneumonia due to penicillin-resistant S. pneumoniae, DK-507k administered subcutaneously showed dose-dependent efficacy and eliminated the bacteria from the lungs, whereas gatifloxacin and moxifloxacin had no significant efficacy. Oral treatment with DK-507k was slightly more effective than that with ciprofloxacin in a rat model of foreign body-associated urinary tract infection caused by a P. aeruginosa isolate for which the MIC of DK-507k was fourfold higher than that of ciprofloxacin. Oral administration of DK-507k to rats achieved higher peak concentrations in serum and higher concentrations in cumulative urine than those achieved with ciprofloxacin. These data indicate the potential advantages of DK-507k over other quinolones for the treatment of a wide range of community-acquired infections.


Author(s):  
James A. Karlowsky ◽  
Meredith A. Hackel ◽  
Daniel F. Sahm

Ceftibuten/VNRX-7145 is a cephalosporin/boronate β-lactamase inhibitor combination under development as an oral treatment for complicated urinary tract infections caused by Enterobacterales producing serine β-lactamases (Ambler class A, C and D). In vivo , VNRX-7145 (VNRX-5236 etzadroxil) is cleaved to the active inhibitor, VNRX-5236. We assessed the in vitro activity of ceftibuten/VNRX-5236 against 1,066 urinary isolates of Enterobacterales from a 2014-2016 global culture collection. Each isolate tested was pre-selected to possess a multidrug-resistant (MDR) phenotype that included non-susceptibility to amoxicillin-clavulanate and resistance to levofloxacin. MICs were determined by CLSI broth microdilution. VNRX-5236 was tested at a fixed concentration of 4 μg/ml. Ceftibuten/VNRX-5236 inhibited 90% of all isolates tested (MIC 90 ) at 2 μg/ml; MIC 90 s for ESBL- ( n =566), serine carbapenemase- ( n =116), and acquired AmpC-positive ( n =58) isolate subsets were ≤0.25, >32, and 8 μg/ml, respectively. At concentrations of ≤1, ≤2, and ≤4 μg/ml, ceftibuten/VNRX-5236 inhibited 89.1, 91.7, and 93.1% of all isolates tested; 96.5, 97.7, and 98.4% of ESBL-positive isolates; 75.9, 81.9, and 81.9% of serine carbapenemase-positive isolates; and 70.7, 81.0, and 87.9% of acquired AmpC-positive isolates. Ceftibuten/VNRX-5236 at concentrations of ≤1, ≤2, and ≤4 μg/ml inhibited 85-89, 89-91, and 91-92% of isolates that were not susceptible (defined by CLSI and EUCAST breakpoint criteria) to nitrofurantoin, trimethoprim-sulfamethoxazole, and/or fosfomycin, (as part of their MDR phenotype), oral agents commonly prescribed to treat uncomplicated urinary tract infections. The potency of ceftibuten/VNRX-5236 (MIC 90 , 2 μg/ml) was similar (within one doubling-dilution) to intravenous-only agents ceftazidime-avibactam (MIC 90 2 μg/ml) and meropenem-vaborbactam (MIC 90 1 μg/ml). Continued investigation of ceftibuten/VNRX-5236 is warranted.


1987 ◽  
Vol 58 (03) ◽  
pp. 921-926 ◽  
Author(s):  
E Seifried ◽  
P Tanswell

SummaryIn vitro, concentration-dependent effects of rt-PA on a range of coagulation and fibrinolytic assays in thawed plasma samples were investigated. In absence of a fibrinolytic inhibitor, 2 μg rt-PA/ml blood (3.4 μg/ml plasma) caused prolongation of clotting time assays and decreases of plasminogen (to 44% of the control value), fibrinogen (to 27%), α2-antiplasmin (to 5%), FV (to 67%), FVIII (to 41%) and FXIII (to 16%).Of three inhibitors tested, a specific polyclonal anti-rt-PA antibody prevented interferences in all fibrinolytic and most clotting assays. D-Phe-Pro-Arg-CH2Cl (PPACK) enabled correct assays of fibrinogen and fibrinolytic parameters but interfered with coagulometric assays dependent on endogenous thrombin generation. Aprotinin was suitable only for a restricted range of both assay types.Most in vitro effects were observed only with rt-PA plasma concentrations in excess of therapeutic values. Nevertheless it is concluded that for clinical application, collection of blood samples on either specific antibody or PPACK is essential for a correct assessment of in vivo effects of rt-PA on the haemostatic system in patients undergoing fibrinolytic therapy.


2020 ◽  
Vol 16 ◽  
Author(s):  
Xi He ◽  
Wenjun Hu ◽  
Fanhua Meng ◽  
Xingzhou Li

Background: The broad-spectrum antiparasitic drug nitazoxanide (N) has been repositioned as a broad-spectrum antiviral drug. Nitazoxanide’s in vivo antiviral activities are mainly attributed to its metabolitetizoxanide, the deacetylation product of nitazoxanide. In reference to the pharmacokinetic profile of nitazoxanide, we proposed the hypotheses that the low plasma concentrations and the low system exposure of tizoxanide after dosing with nitazoxanide result from significant first pass effects in the liver. It was thought that this may be due to the unstable acyloxy bond of nitazoxanide. Objective: Tizoxanide prodrugs, with the more stable formamyl substituent attached to the hydroxyl group rather than the acetyl group of nitazoxanide, were designed with the thought that they might be more stable in plasma. It was anticipated that these prodrugs might be less affected by the first pass effect, which would improve plasma concentrations and system exposure of tizoxanide. Method: These O-carbamoyl tizoxanide prodrugs were synthesized and evaluated in a mouse model for pharmacokinetic (PK) properties and in an in vitro model for plasma stabilities. Results: The results indicated that the plasma concentration and the systemic exposure of tizoxanide (T) after oral administration of O-carbamoyl tizoxanide prodrugs were much greater than that produced by equimolar dosage of nitazoxanide. It was also found that the plasma concentration and the systemic exposure of tizoxanide glucuronide (TG) were much lower than that produced by nitazoxanide. Conclusion: Further analysis showed that the suitable plasma stability of O-carbamoyl tizoxanide prodrugs is the key factor in maximizing the plasma concentration and the systemic exposure of the active ingredient tizoxanide.


2020 ◽  
Author(s):  
Hacer Kuzu Okur ◽  
Koray Yalcin ◽  
Cihan Tastan ◽  
Sevda Demir ◽  
Bulut Yurtsever ◽  
...  

UNSTRUCTURED Dornase alfa, the recombinant form of the human DNase I enzyme, breaks down neutrophil extracellular traps (NET) that include a vast amount of DNA fragments, histones, microbicidal proteins and oxidant enzymes released from necrotic neutrophils in the highly viscous mucus of cystic fibrosis patients. Dornase alfa has been used for decades in patients with cystic fibrosis to reduce the viscoelasticity of respiratory tract secretions, to decrease the severity of respiratory tract infections, and to improve lung function. Previous studies have linked abnormal NET formations to lung diseases, especially to acute respiratory distress syndrome (ARDS). Coronavirus disease 2019 (COVID-19) pandemic affected more than two million people over the world, resulting in unprecedented health, social and economic crises. The COVID-19, viral pneumonia that progresses to ARDS and even multiple organ failure, is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). High blood neutrophil levels are an early indicator of SARS-CoV-2 infection and predict severe respiratory diseases. A similar mucus structure is detected in COVID-19 patients due to the accumulation of excessive NET in the lungs. Here, we show our preliminary results with dornase alfa that may have an in-vitro anti-viral effect against SARS-CoV-2 infection in a bovine kidney cell line, MDBK without drug toxicity on healthy adult peripheral blood mononuclear cells. In this preliminary study, we also showed that dornase alfa can promote clearance of NET formation in both an in-vitro and three COVID-19 cases who showed clinical improvement in radiological analysis (2-of-3 cases), oxygen saturation (SpO2), respiratory rate, disappearing of dyspnea and coughing.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 825
Author(s):  
Henrique Pinto ◽  
Manuel Simões ◽  
Anabela Borges

This study sought to assess the prevalence and impact of biofilms on two commonly biofilm-related infections, bloodstream and urinary tract infections (BSI and UTI). Separated systematic reviews and meta-analyses of observational studies were carried out in PubMed and Web of Sciences databases from January 2005 to May 2020, following PRISMA protocols. Studies were selected according to specific and defined inclusion/exclusion criteria. The obtained outcomes were grouped into biofilm production (BFP) prevalence, BFP in resistant vs. susceptible strains, persistent vs. non-persistent BSI, survivor vs. non-survivor patients with BSI, and catheter-associated UTI (CAUTI) vs. non-CAUTI. Single-arm and two-arm analyses were conducted for data analysis. In vitro BFP in BSI was highly related to resistant strains (odds ratio-OR: 2.68; 95% confidence intervals-CI: 1.60–4.47; p < 0.01), especially for methicillin-resistant Staphylococci. BFP was also highly linked to BSI persistence (OR: 2.65; 95% CI: 1.28–5.48; p < 0.01) and even to mortality (OR: 2.05; 95% CI: 1.53–2.74; p < 0.01). Candida spp. was the microorganism group where the highest associations were observed. Biofilms seem to impact Candida BSI independently from clinical differences, including treatment interventions. Regarding UTI, multi-drug resistant and extended-spectrum β-lactamase-producing strains of Escherichia coli, were linked to a great BFP prevalence (OR: 2.92; 95% CI: 1.30–6.54; p < 0.01 and OR: 2.80; 95% CI: 1.33–5.86; p < 0.01). More in vitro BFP was shown in CAUTI compared to non-CAUTI, but with less statistical confidence (OR: 2.61; 95% CI: 0.67–10.17; p < 0.17). This study highlights that biofilms must be recognized as a BSI and UTI resistance factor as well as a BSI virulence factor.


Sign in / Sign up

Export Citation Format

Share Document