scholarly journals Shaped to kill: The evolution of siphonophore tentilla for specialized prey capture in the open ocean

2019 ◽  
Author(s):  
Alejandro Damian-Serrano ◽  
Steven H.D. Haddock ◽  
Casey W. Dunn

AbstractPredator specialization has often been considered an evolutionary ‘dead-end’ due to the constraints associated with the evolution of morphological and functional optimizations throughout the organism. However, in some predators, these changes are localized in separate structures dedicated to prey capture. One of the most extreme cases of this modularity can be observed in siphonophores, a clade of pelagic colonial cnidarians that use tentilla (tentacle side branches armed with nematocysts) exclusively for prey capture. Here we study how siphonophore specialists and generalists evolve, and what morphological changes are associated with these transitions. To answer these questions, we: (1) measured 29 morphological characters of tentacles from 45 siphonophore species, (2) mapped these data to a phylogenetic tree, and (3) analyzed the evolutionary associations between morphological characters and prey type data from the literature. Instead of a dead-end, we found that siphonophore specialists can evolve into generalists, and that specialists on one prey type have directly evolved into specialists on other prey types. Our results show that siphonophore tentillum morphology has strong evolutionary associations with prey type, and suggest that shifts between prey types are linked to shifts in the morphology, mode of evolution, and genetic correlations of tentilla and their nematocysts. The evolutionary history of siphonophore specialization helps build a broader perspective on predatory niche diversification via morphological innovation and evolution. These findings contribute to understanding how specialization and morphological evolution have shaped present-day food webs.Significance StatementPredatory specialization is often associated with the evolution of modifications in the morphology of the prey capture apparatus. Specialization has been considered an evolutionary ‘dead-end’ due to the constraints associated with these morphological changes. However, in predators like siphonophores, armed with modular structures used exclusively for prey capture, this assumption is challenged. Our results show that siphonophores can evolve generalism and new prey-type specializations by modifying the morphological states, modes of evolution, and genetic correlations between the parts of their prey capture apparatus. These findings demonstrate how studying open-ocean non-bilaterian predators can reveal novel patterns and mechanisms in the evolution of specialization. Understanding these evolutionary processes is fundamental to the study of food-web structure and complexity.

2021 ◽  
Vol 118 (8) ◽  
pp. e2005063118
Author(s):  
Alejandro Damian-Serrano ◽  
Steven H. D. Haddock ◽  
Casey W. Dunn

Predator specialization has often been considered an evolutionary “dead end” due to the constraints associated with the evolution of morphological and functional optimizations throughout the organism. However, in some predators, these changes are localized in separate structures dedicated to prey capture. One of the most extreme cases of this modularity can be observed in siphonophores, a clade of pelagic colonial cnidarians that use tentilla (tentacle side branches armed with nematocysts) exclusively for prey capture. Here we study how siphonophore specialists and generalists evolve, and what morphological changes are associated with these transitions. To answer these questions, we: a) Measured 29 morphological characters of tentacles from 45 siphonophore species, b) mapped these data to a phylogenetic tree, and c) analyzed the evolutionary associations between morphological characters and prey-type data from the literature. Instead of a dead end, we found that siphonophore specialists can evolve into generalists, and that specialists on one prey type have directly evolved into specialists on other prey types. Our results show that siphonophore tentillum morphology has strong evolutionary associations with prey type, and suggest that shifts between prey types are linked to shifts in the morphology, mode of evolution, and evolutionary correlations of tentilla and their nematocysts. The evolutionary history of siphonophore specialization helps build a broader perspective on predatory niche diversification via morphological innovation and evolution. These findings contribute to understanding how specialization and morphological evolution have shaped present-day food webs.


Ocean Science ◽  
2017 ◽  
Vol 13 (5) ◽  
pp. 673-690 ◽  
Author(s):  
Guilherme Franz ◽  
Matthias T. Delpey ◽  
David Brito ◽  
Lígia Pinto ◽  
Paulo Leitão ◽  
...  

Abstract. Coastal defence structures are often constructed to prevent beach erosion. However, poorly designed structures may cause serious erosion problems in the downdrift direction. Morphological models are useful tools to predict such impacts and assess the efficiency of defence structures for different scenarios. Nevertheless, morphological modelling is still a topic under intense research effort. The processes simulated by a morphological model depend on model complexity. For instance, undertow currents are neglected in coastal area models (2DH), which is a limitation for simulating the evolution of beach profiles for long periods. Model limitations are generally overcome by predefining invariant equilibrium profiles that are allowed to shift offshore or onshore. A more flexible approach is described in this paper, which can be generalised to 3-D models. The present work is based on the coupling of the MOHID modelling system and the SWAN wave model. The impacts of different designs of detached breakwaters and groynes were simulated in a schematic beach configuration following a 2DH approach. The results of bathymetry evolution are in agreement with the patterns found in the literature for several existing structures. The model was also tested in a 3-D test case to simulate the formation of sandbars by undertow currents. The findings of this work confirmed the applicability of the MOHID modelling system to study sediment transport and morphological changes in coastal zones under the combined action of waves and currents. The same modelling methodology was applied to a coastal zone (Costa da Caparica) located at the mouth of a mesotidal estuary (Tagus Estuary, Portugal) to evaluate the hydrodynamics and sediment transport both in calm water conditions and during events of highly energetic waves. The MOHID code is available in the GitHub repository.


2020 ◽  
Author(s):  
Ludovic Le Renard ◽  
André L. Firmino ◽  
Olinto L. Pereira ◽  
Ruth A. Stockey ◽  
Mary. L. Berbee

AbstractPREMISE OF THE STUDYFossils show that fly-speck fungi have been reproducing with small, black thyriothecia on leaf surfaces for ∼250 million years. We analyze morphological characters of extant thyriothecial fungi to develop a phylogenetic framework for interpreting fossil taxa.METHODSWe placed 59 extant fly-speck fungi in a phylogeny of 320 Ascomycota using nuclear ribosomal large and small subunit sequences, including newly determined sequences from nine taxa. We reconstructed ancestral character states using BayesTraits and maximum likelihood after coding 11 morphological characters based on original observations and literature. We analyzed the relationships of three previously published Mesozoic fossils using parsimony and our morphological character matrix, constrained by the molecular phylogeny.KEY RESULTSThyriothecia evolved convergently in multiple lineages of superficial, leaf- inhabiting ascomycetes. The radiate and ostiolate scutellum organization is restricted to Dothideomycetes. Scutellum initiation by intercalary septation of a single hypha characterizes Asterinales and Asterotexiales, and initiation by coordinated growth of two or more adjacent hyphae characterizes Aulographaceae (order incertae sedis). Scutella in Microthyriales are initiated apically on a lateral hyphal branch. Patterns of hyphal branching in scutella contribute to distinguishing among orders. Parsimony resolves three fossil taxa as Dothideomycetes; one is further resolved as a member of a Microthyriales-Zeloasperisporiales clade within Dothideomycetes.CONCLUSIONSThis is the most comprehensive systematic study of thyriothecial fungi and their relatives to date. Parsimony analysis of the matrix of character states of modern taxa provides an objective basis for interpreting fossils, leading to insights into morphological evolution and geological ages of Dothideomycetes clades.


2020 ◽  
Vol 42 (2) ◽  
pp. 176-186
Author(s):  
Cham Dao Dinh

In recent years, accretion-erosion processes are frequently recorded in the estuary of Cua Dai, Quang Nam province. Most recently, however, sand bars are formed in the estuary not far from the place where the Inland Waterways Authority of Vietnam had previously dredged. The estuary continues to be accreted by sand. These have been drawing special attention of national and international scientists. While there is accretion at the estuary, eroded processes are strongly recorded along the coastlines of Quang Nam province. Therefore, it is necessary to carry out a study in the effects of the hydrodynamic regime on morphological changes in the Cua Dai estuary and coastlines of Quang Nam province. The goal of this paper is to fully interpret the causes, regimes of accretion and erosion processes over the study area. In this study, satellite images and hydrodynamic models of Delft3D and MIKE 11 are applied. The results show a strong accretion process in the estuary of Cua Dai. Sandbar formation across the Cua Dai estuary comes from the interaction of flood, wave, and current conditions during the northeast monsoon. This mainly affects the changes in morphology in the estuary of Cua Dai, Quang Nam.


2021 ◽  
Vol 38 (5) ◽  
pp. 312-318
Author(s):  
Wiliam Carvajal Veitía ◽  
Sofía Alberta León Pérez ◽  
María Elena González Revuelta ◽  
Yanel Deturnel Campo

Objective: To evaluate the morphological changes of Cuban super heavyweight boxers, more and less successful, through the period 1976-2014. Material and method: Thirty super heavy boxers, who were members of the Cuban national teams in the period 1976-2014, were compared; The strategy consisted of separating the group in the periods 1976-1989, 1990-1999, 2000-2009 and 2010-2014. Sixteen anthropometric dimensions were recorded (weight, height, sitting height, six skinfold thickness, five girths and two breadths), from which the body composition and the somatotype were obtained. The data were analyzed applying the Analysis of variance (ANOVA). The conglomerate analysis based on the Euclidean distance was used in order to evaluate the correspondence between physical development and sports performance. A discriminant analysis was carried out in order to analyze the contribution of the anthropometrical variables to the variance of different clusters. Results: Most of the anthropometric dimensions and indicators showed significant differences, having an impact on the increase in adiposity, body fat and endomorphy (p <0.05), as well as the decrease in the indicators dependent on height (p <0.05). The analysis by conglomerates, as well as the study of the Migratory Distances of the somatotype, showed that the Olympic medalist boxers differed in terms of the characteristics of body composition and in terms of the intensity of the somatotype changes in the period 1976-2014. Conclusions: The Cuban boxer of the super heavyweight category showed a wide range of morphological demands, but these were framed within the international trends of professional boxers. The morphological attributes of the Olympic medalists differed from each other, and from the rest of the boxers investigated over time. These results provide anthropometric data of high scientific value, both for selection and for medical control of training.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marco J. Cabrerizo ◽  
Emilio Marañón

Grazing pressure, estimated as the ratio between microzooplankton grazing and phytoplankton growth rates (g:μ), is a strong determinant of microbial food-web structure and element cycling in the upper ocean. It is generally accepted that g is more sensitive to temperature than μ, but it remains unknown how the thermal dependence (activation energy, Ea) of g:μ varies over spatial and temporal scales. To tackle this uncertainty, we used an extensive literature analysis obtaining 751 paired rate estimates of μ and g from dilution experiments performed throughout the world’s marine environments. On a geographical scale, we found a stimulatory effect of temperature in polar open-ocean (∼0.5 eV) and tropical coastal (∼0.2 eV) regions, and an inhibitory one in the remaining biomes (values between −0.1 and −0.4 eV). On a seasonal scale, the temperature effect on g:μ ratios was stimulatory, particularly in polar environments; however, the large variability existing between estimates resulted in non-significant differences among biomes. We observed that increases in nitrate availability stimulated the temperature dependence of grazing pressure (i.e., led to more positive Ea of g:μ) in open-ocean ecosystems and inhibited it in coastal ones, particularly in polar environments. The percentage of primary production grazed by microzooplankton (∼56%) was similar in all regions. Our results suggest that warming of surface ocean waters could exert a highly variable impact, in terms of both magnitude and direction (stimulation or inhibition), on microzooplankton grazing pressure in different ocean regions.


Development ◽  
1997 ◽  
Vol 124 (1) ◽  
pp. 149-157 ◽  
Author(s):  
B.T. Rogers ◽  
M.D. Peterson ◽  
T.C. Kaufman

The products of the HOM/Hox homeotic genes form a set of evolutionarily conserved transcription factors that control elaborate developmental processes and specify cell fates in many metazoans. We examined the expression of the ortholog of the homeotic gene Sex combs reduced (Scr) of Drosophila melanogaster in insects of three divergent orders: Hemiptera, Orthoptera and Thysanura. Our data reflect how the conservation and variation of Scr expression has affected the morphological evolution of insects. Whereas the anterior epidermal expression of Scr, in a small part of the posterior maxillary and all of the labial segment, is found to be in common among all four insect orders, the posterior (thoracic) expression domains vary. Unlike what is observed in flies, the Scr orthologs of other insects are not expressed broadly over the first thoracic segment, but are restricted to small patches. We show here that Scr is required for suppression of wings on the prothorax of Drosophila. Moreover, Scr expression at the dorsal base of the prothoracic limb in two other winged insects, crickets (Orthoptera) and milkweed bugs (Hemiptera), is consistent with Scr acting as a suppressor of prothoracic wings in these insects. Scr is also expressed in a small patch of cells near the basitarsal-tibial junction of milkweed bugs, precisely where a leg comb develops, suggesting that Scr promotes comb formation, as it does in Drosophila. Surprisingly, the dorsal prothoracic expression of Scr is also present in the primitively wingless firebrat (Thysanura) and the leg patch is seen in crickets, which have no comb. Mapping both gene expression patterns and morphological characters onto the insect phylogenetic tree demonstrates that in the cases of wing suppression and comb formation the appearance of expression of Scr in the prothorax apparently precedes these specific functions.


Paleobiology ◽  
1996 ◽  
Vol 22 (3) ◽  
pp. 386-405 ◽  
Author(s):  
Richard D. Norris ◽  
Richard M. Corfield ◽  
Julie Cartlidge

Analysis of the evolution of the Globorotalia (Fohsella) lineage of planktic foraminifera suggests that reproductive ecology and shell shape have evolved independently in this group. The silhouette of fohsellid shells displays a nearly unbroken anagenetic trend, yet isotopic data show that the fohsellids changed their depth of reproduction during the anagenetic evolution of their skeletons. Remarkably, there are no correlations between anagenesis in skeletal shape and the establishment of reproductive isolation. Apparently, anagenesis masks at least one speciation event that is apparent only in the isotopic evidence for a change in reproductive ecology. Although anagenetic trends have been widely cited as evidence for gradual speciation in planktic foraminifera and other microfossil groups, our data suggest that they should not always be considered to record either the tempo or mode of speciation.Speciation was apparently uncoupled from morphological evolution in fohsellids because these evolutionary phenomena occurred in different phases of ontogeny. Gradual morphological changes were associated with the main phase of shell growth of both the ancestor and descendant species in the near-surface ocean. Reproductive isolation occurred when ancestral and descendant populations became established at different depths near the end of the life cycle. Morphological evolution may also be uncoupled from reproductive isolation in other organisms that experience very different selection pressures over the duration of their ontogenies, such as parasites with many hosts, species with multiple phases of metamorphosis, and organisms that broadcast their gametes.


2016 ◽  
Vol 85 (4) ◽  
pp. 361-386 ◽  
Author(s):  
Jonas Keiler ◽  
Stefan Richter ◽  
Christian S. Wirkner

The Southern Australian crustacean species Lomis hirta (Lomisoidea: Lomisidae) is a representative of one of the three anomuran taxa which obtained their crab-like habitus independently from each other. This process, the evolutionary transformation into a crab-like form, is termed carcinization. To shed light on the morphological changes which took place during carcinization and to investigate structural dependence (coherence) between external and internal morphological characters, we studied L. hirta and representatives of its putatively most closely related taxa, Aegla cholchol (Aegloidea: Aeglidae) and Kiwa puravida (Chirostyloidea: Kiwaidae). External and internal anatomy was studied using microcomputertomography and computer-aided 3D reconstruction. A. cholchol and K. puravida belong to equally exceptional lineages: Aegla is endemic to South America and lives in freshwater habitats; Kiwa is a deep sea dweller associated to chemosynthetic bacteria found in methane seeps or hydrothermal vents. On the basis of recent cladistic analyses we reconstruct the anatomical ground pattern of the squat lobster-like last common ancestor of the three taxa and trace the morphological transformations that affected inner and outer morphology in the recent forms. Our results show, among other things, that the pleon in Lomis underwent drastic modifications in the context of carcinization, including a reduction of the muscular portion leaving more room for the hepatopancreas and gonads, and a narrowing of the pleonal ganglia which became shifted anteriorly into the cephalothorax and attached to the cephalothoracic ganglion. We interpret these anatomical changes in Lomis to have come about because of the loss of the caridoid escape reaction, which in turn was a direct consequence of the evolution of a strongly bent pleon as part of the crab-like habitus, and of a hidden lifestyle.


2020 ◽  
Vol 12 (3) ◽  
pp. 482 ◽  
Author(s):  
Marek Kasprzak ◽  
Michał Łopuch ◽  
Tadeusz Głowacki ◽  
Wojciech Milczarek

The article presents geomorphological analysis results for two outwash fans (sandurs), Elveflya and Nottingham, in the marginal zone of the Werenskiold Glacier in the south-west part of the Spitsbergen. The main goal of this study was to reconstruct the morphological evolution of these landforms and to identify the permafrost zone under their surface. For this purpose, age data of fossils were compiled and compared with newly exposed and dated fossil tundra in the layer glaciotectonically deformed by the forming glacier end moraine. Using this method, a time frame was identified for the glacier advance and for the simultaneous formation of the outwash plains. It was concluded that the Elveflya surface has been built-up with deposits since the Little Ice Age. Sediment deposition ended in the late 1960s, due to hydrographic changes and the redirection of all proglacial waters towards the Nottingham bay. A photointerpretation analysis based on two orthophotomaps and LANDSAT scenes allowed the identification of five microfans in Elveflya, of which two youngest fans have a twice shorter range than the other three. The sixth microfan is currently shaped by deposits washed from the slope of the end moraine. An additional focus was placed on a currently active sandur, which fills the Nottingham bay, in order to identify its growth rate. The average growth rate of this surface increased from 5700 m2·year−1 over the period of 1985–2000 to 24,900 m2·year−1 over the period of 2010–2017. Electromagnetic measurements carried out on the surfaces of the sandurs demonstrated that the electrical resistivity of the ground is high in the apex of the Elveflya fan (ρ ≥ 1 kΩ.m) and low in its toe (typically ρ < 200 Ω.m), as in the case of the Nottingham fan ground. In the interpretation advanced here, permafrost developed in the proximal part of the Elveflya sandur, which continues to be supplied by fresh groundwaters flowing from the glacier direction. Low electrical resistivity of the ground in the distal part of the outwash fan suggests the absence of ground ice in this zone, which is subjected to the intrusion of salty and comparatively warm seawater, reaching approximately 1 km inland under the surface of the low-elevated marine terrace. The identified zones additionally display different tendencies for vertical movements of the terrain surface, as identified with the Small Baseline Subset (SBAS) method. The proximal part of the Elveflya outwash fan is relatively stable, while its distal part lowers in the summer period by a maximum of 5 cm. The resulting morphological changes include linear cracks having lengths up to 580 m and an arc line consistent with the coastline.


Sign in / Sign up

Export Citation Format

Share Document