scholarly journals Character evolution of modern fly-speck fungi and implications for interpreting thyriothecial fossils

2020 ◽  
Author(s):  
Ludovic Le Renard ◽  
André L. Firmino ◽  
Olinto L. Pereira ◽  
Ruth A. Stockey ◽  
Mary. L. Berbee

AbstractPREMISE OF THE STUDYFossils show that fly-speck fungi have been reproducing with small, black thyriothecia on leaf surfaces for ∼250 million years. We analyze morphological characters of extant thyriothecial fungi to develop a phylogenetic framework for interpreting fossil taxa.METHODSWe placed 59 extant fly-speck fungi in a phylogeny of 320 Ascomycota using nuclear ribosomal large and small subunit sequences, including newly determined sequences from nine taxa. We reconstructed ancestral character states using BayesTraits and maximum likelihood after coding 11 morphological characters based on original observations and literature. We analyzed the relationships of three previously published Mesozoic fossils using parsimony and our morphological character matrix, constrained by the molecular phylogeny.KEY RESULTSThyriothecia evolved convergently in multiple lineages of superficial, leaf- inhabiting ascomycetes. The radiate and ostiolate scutellum organization is restricted to Dothideomycetes. Scutellum initiation by intercalary septation of a single hypha characterizes Asterinales and Asterotexiales, and initiation by coordinated growth of two or more adjacent hyphae characterizes Aulographaceae (order incertae sedis). Scutella in Microthyriales are initiated apically on a lateral hyphal branch. Patterns of hyphal branching in scutella contribute to distinguishing among orders. Parsimony resolves three fossil taxa as Dothideomycetes; one is further resolved as a member of a Microthyriales-Zeloasperisporiales clade within Dothideomycetes.CONCLUSIONSThis is the most comprehensive systematic study of thyriothecial fungi and their relatives to date. Parsimony analysis of the matrix of character states of modern taxa provides an objective basis for interpreting fossils, leading to insights into morphological evolution and geological ages of Dothideomycetes clades.

Phytotaxa ◽  
2014 ◽  
Vol 191 (1) ◽  
pp. 115 ◽  
Author(s):  
JOON SANG PARK ◽  
JIN HWAN LEE

We describe the new fultoportulate diatom species, Conticribra weissflogiopsis, isolated from brackish waters in Korea, based on morphological characters and molecular data. The new species is characterized by having areolae venation with internal (semi-) continuous cribra, a flat valve face, a single marginal rimoportula replacing a marginal fultoportula, a subcentral ring of the valve face fultoportulae, and a dextral pattern of cingulum structure. The overall valve structure of C. weissflogiopsis resembles that of C. weissflogii; however, the cingulum structure differs between the two species—C. weissflogiopsis has a dextral offset of band opening in the cingulum, whereas C. weissflogii has a sinistral offset. Phylogenetic analysis of the nuclear small subunit ribosomal DNA (SSU rDNA) revealed that C. weissflogiopsis is located in the Conticribra clade. Further, the pairwise genetic distance based on the SSU rDNA and the internal transcribed spacer 2 (ITS2) indicated that C. weissflogiopsis is a distinct Conticribra species. On the basis of the morphology and molecular phylogeny, we expand the hypothesis regarding the morphological evolution of Conticribra species.


2017 ◽  
Vol 31 (3) ◽  
pp. 233 ◽  
Author(s):  
Carlos E. Santibáñez-López ◽  
Ricardo Kriebel ◽  
Prashant P. Sharma

Morphology still plays a key role in the systematics and phylogenetics of most of the scorpion families and genera, including the Diplocentridae Karsch, 1880. The monophyly of this family, and the monophyly of its two subfamilies is supported by morphological characters; however, neither hypothesis has been tested using molecular data. The lack of a molecular phylogeny has prevented the study of the evolution of morphology within the family. Here, we examine the morphological evolution of several key character systems in diplocentrid systematics. We tested the monophyly of the Diplocentridae, and subsequently the validity of its two subfamilies using a five-locus phylogeny. We examined the variation and evolution of the shape of the carapace, the external surface of the pedipalp patella and the retrolateral surface of the pedipalp chelae of males and females. We also examined the phylogenetic signal of discrete and continuous characters previously reported. We show that Diplocentridae is monophyletic, but Nebinae is nested within Diplocentrinae. Therefore, Nebinae is synonymised with Diplocentrinae (new synonymy). Finally, we show that a new character system proposed here, tarsal spiniform and macrosetal counts, retains high phylogenetic signal and circumscribes independently evolving substructures within this character system.


Author(s):  
Quanshun Luo ◽  
Kuangnan Chi ◽  
Shuxin Li ◽  
Pete Barnard

Nimonic 263 has been selected as a candidate header/piping material of advanced ultra-supercritical (A-USC) boilers for the next generation of fossil fuel power plant. Experimental assessments on the microstructural stability of this material are presented in this paper. Microstructural evolution has been quantified by high resolution field emission SEM and TEM. Electron diffraction and the combined XRD and Gaussian peak-fitting have been applied to investigate the coherency and lattice misfit between the gamma prime (γ′) precipitates and the gamma (γ) matrix. The micro structure subjected to solution and hardening treatment consists of γ-matrix and a network of carbide precipitates along the grain boundaries. Large quantities of fine γ′-Ni3(Ti,Al) precipitates were observed, with an average size of 17 nm and coherent with the matrix lattice. The overall misfit has been quantified to be 0.28%. After long term aging at 700 and 725 °C for various periods up to 20,000 hours, γ′ was still the predominant precipitate and mostly coherent with the matrix. A few needle-shape η-Ni3Ti intermetallic precipitates were found in the grain boundary regions. The γ′ size has grown progressively to 78 nm, accompanied by the γ′-γ constrained misfit increasing to 0.50%. Moreover, the M23C6-type grain boundary carbides were found to have experienced morphological evolution, including the nucleation of Widmanstatten-type needles and their initial growth towards the matrix.


2021 ◽  
pp. 1-24
Author(s):  
Mariana F. Lindner ◽  
Augusto Ferrari ◽  
Adriano Cavalleri

Abstract Holopothrips is a diverse group of thrips associated to galls in the Neotropics, with a variety of host plants and wide morphological diversity. Relationships to other Neotropical groups have been proposed, but are still untested, and the monophyly of the genus remains doubtful. Here, we perform a phylogenetic analysis of Holopothrips, based on morphological characters. A total of 87 species were included in the matrix and eight analyses were carried out, but all of them failed to recover Holopothrips as a monophyletic grouping. Bremer and Bootstrap support values were low, and the topologies varied among all analyses, with uncertain internal relations for the ingroup. These results indicate that the relationships for Holopothrips species, and the proposed related genera, are more complex than previously reported; and morphological characters may not be enough to recover the evolutionary story within this group. We also discuss the influences of different character coding, continuous characters and weighting schemes in our results.


Development ◽  
1997 ◽  
Vol 124 (1) ◽  
pp. 149-157 ◽  
Author(s):  
B.T. Rogers ◽  
M.D. Peterson ◽  
T.C. Kaufman

The products of the HOM/Hox homeotic genes form a set of evolutionarily conserved transcription factors that control elaborate developmental processes and specify cell fates in many metazoans. We examined the expression of the ortholog of the homeotic gene Sex combs reduced (Scr) of Drosophila melanogaster in insects of three divergent orders: Hemiptera, Orthoptera and Thysanura. Our data reflect how the conservation and variation of Scr expression has affected the morphological evolution of insects. Whereas the anterior epidermal expression of Scr, in a small part of the posterior maxillary and all of the labial segment, is found to be in common among all four insect orders, the posterior (thoracic) expression domains vary. Unlike what is observed in flies, the Scr orthologs of other insects are not expressed broadly over the first thoracic segment, but are restricted to small patches. We show here that Scr is required for suppression of wings on the prothorax of Drosophila. Moreover, Scr expression at the dorsal base of the prothoracic limb in two other winged insects, crickets (Orthoptera) and milkweed bugs (Hemiptera), is consistent with Scr acting as a suppressor of prothoracic wings in these insects. Scr is also expressed in a small patch of cells near the basitarsal-tibial junction of milkweed bugs, precisely where a leg comb develops, suggesting that Scr promotes comb formation, as it does in Drosophila. Surprisingly, the dorsal prothoracic expression of Scr is also present in the primitively wingless firebrat (Thysanura) and the leg patch is seen in crickets, which have no comb. Mapping both gene expression patterns and morphological characters onto the insect phylogenetic tree demonstrates that in the cases of wing suppression and comb formation the appearance of expression of Scr in the prothorax apparently precedes these specific functions.


Zootaxa ◽  
2011 ◽  
Vol 2984 (1) ◽  
pp. 67 ◽  
Author(s):  
LEANDRO C. S. ASSIS ◽  
MARCELO R. DE CARVALHO ◽  
QUENTIN D. WHEELER

David Wake and colleagues provided a thought-provoking review of the concept of homoplasy through the integration, within a phylogenetic framework, of genetic and developmental data (Wake et al. 2011). According to them (p. 1032) “Molecular sequence data have greatly increased our ability to identify homoplastic traits.” This is made clear, for example, in their flow chart for homoplasy detection (Figure 2, p. 1034), wherein homoplasy is discovered through the mapping of “traits of interest” onto a phylogram, a practice common in the molecular phylogenetic paradigm. The “mapping” is usually of morphological characters that are employed to support the chosen (molecular) topology, but which, as a consequence, do not themselves contribute to the formation of those topologies (Assis & Carvalho 2010).


2019 ◽  
Vol 12 (1) ◽  
pp. 167
Author(s):  
Ying Liu ◽  
Wei Deng ◽  
Li Peng

The human–environment relationship is bidirectional, meaning that human attitudes and behavior to nature are at the root of environmental change, while changes in the environment affect human attitudes and behavior. It is necessary to analyze the human–environment relationship from two aspects: (a) Whether there is a good objective basis for maintaining an environment, and (b) whether people report that they are satisfied with that environment. This study attempted to construct a framework to evaluate the human–environment relationship considering these two aspects. The framework consists of three parts: Traditional evaluation, indicator construction, and evaluation considering the relationship between subjective and objective assessment. Traditional evaluations consist of subjective evaluations and objective assessments. Indicator construction focuses on putting forward indicators that quantitively evaluate the human–environment relationship, considering the results of objective assessments and subjective evaluations. The indicators introduced in this study include MD (match degree) and OSC (objective assessment and subjective evaluation comparison) to explain the difference and the relationship between objective assessments and subjective evaluations of the environment. Then, based on the indicator value, a matrix containing four situations (Match-H, Match-L, H-L, and L-H) was constructed to explore why a human–environment relationship may not be harmonious. Since the upper Minjiang River basin is a typical area, because of its intensive human activity, as well as its fragile ecological environment, this study chose it as a case study and used it to verify the framework. Through the framework construction and application, this study found that: (1) The framework of this study provided a more comprehensive method to evaluate the human–environment relationship; (2) as the subjective evaluation was based on individual comprehensive tradeoffs, the evaluation combining the subjective and objective assessment was more accurate; (3) environmental conditions were the basis, and human activities were the key factors, for the coordination of human–environment relationships; so the matrix put forward in this study was necessary for finding the cause of human–environment incongruity.


Zootaxa ◽  
2018 ◽  
Vol 4457 (1) ◽  
pp. 179 ◽  
Author(s):  
LEIDYS MURILLO-RAMOS ◽  
RENZO HERNÁNDEZ TORRES ◽  
RAYNER NÚÑEZ ÁGUILA ◽  
ROGER AYAZO

Phoebis Hübner (1819) is a genus of the Neotropical subfamily Coliadinae (Lepidoptera: Pieridae). The highest diversity is found in the Greater Antilles islands in the Caribbean region. Although from the taxonomic point of view, Phoebis seems to be a stable genus, there is no phylogenetic hypothesis corroborating the monophyly of the genus. In this study, we used both morphological characters and a genetic dataset consisting of one mitochondrial (COI) and three nuclear markers (RpS5, MDH, Wingless). The matrix was concatenated and analysed with parsimony under implied weights (IW). Also, the concatenated data set was analysed using maximum likelihood and Bayesian inference evolutionary methods, and ancestral states reconstruction with characters traditionally used for classification of Phoebis was carried out. The same topology was recovered by Parsimony, ML and BI analysis, and suggest that Phoebis is not a monophyletic genus, with Aphrissa and Rhabdodryas nested within it. Our findings allow us to consider the genera Rhabdodryas syn.rev. and Aphrissa syn.rev. to be synonyms of Phoebis. These results have implications for the systematics of Phoebis and the genera that should be accepted in Coliadinae.


Zootaxa ◽  
2011 ◽  
Vol 2988 (1) ◽  
pp. 37 ◽  
Author(s):  
GRAŻYNA SOIKA ◽  
MARCIN KOZAK

The purpose of this research was to investigate both the qualitative and quantitative morphological traits of Phytoptus tetratrichus Nalepa 1890 populations inhabiting three different lime tree species: Tilia cordata Mill., Tilia tomentosa Moench and Tilia americana L.. Morphological characters of two populations collected from T. cordata and T. tomentosa over three successive growing seasons were compared with the aid of canonical variate analysis. Additionally, individuals occurring on T. americana in a consecutive year were also studied. Protogyne and deutogyne females were differentiated using both qualitative and quantitative traits. For deutogyne females, individuals from all combinations of Tilia species × year (which constituted populations for comparison) clearly differed from each other. However, the differences between populations from T. cordata and T. tomentosa were less distinct. For protogyne females, observed differences were clearly visible. The between-season variation in morphological characters such as body size appeared to be quite large, indicating that morphological analysis based on observations from only a single season can be inaccurate. Deutogyne females of P. tetratrichus were observed to cause various types of damage symptoms: leaf-roll galls along the leaf edges of T. cordata; small round erinea on the lower leaf surface and small wart-like galls on the upper leaf surface of T. tomentosa; fingerlike galls on both leaf surfaces of T. americana.


2012 ◽  
Vol 46 (6) ◽  
pp. 31-48
Author(s):  
K. B. Sukhomlin

Abstract Phylogenetic relationships among the Palaearctic genera of the subfamily Simuliinae are analyzed based on the matrix of 100 morphological characters and 37 taxa, including 6 outgroups. Parsimonic analysis was resulted in 3 consensus trees (weighting based on CI, RI and RC indices) of slightly different topology, which show monophyly of the subfamily Simuliinae, tribes Stegopternini, Nevermanniini, Wilhelmiini and Simuliini, and a possible sister-group relationships between the latter two tribes. Tribe Ectemniini is apparently a paraphyletic formation. The analysis also supports transferring of the Stegopternini and Nevermanniini from Prosimuliinae to Simuliinae.


Sign in / Sign up

Export Citation Format

Share Document