scholarly journals An analysis of avian vocal performance at the note and song levels

2019 ◽  
Author(s):  
David M. Logue ◽  
Jacob A. Sheppard ◽  
Bailey Walton ◽  
Benjamin E. Brinkman ◽  
Orlando J. Medina

AbstractSexual displays that require extreme feats of physiological performance have the potential to reliably indicate the signaller’s skill. The hypothesis that the structure of bird song is physiologically constrained remains controversial. We tested for evidence of performance constraints in Adelaide’s warblers (Setophaga adelaidae) songs. At the note level, we identified three trade-offs with well-defined limits. At the song level, we identified two trade-offs, but their limits were less well-defined than the note-level limits. Trade-offs at both levels suggest that song structure is constrained by limits to the speed of both frequency modulation (while vocalizing and between notes) and respiration. Individual males experience the same trade-offs that characterize the population, but the intensity of those trade-offs varies among individuals. Performance metrics derived from the observed limits to performance varied moderately among individuals and strongly among song types. Note-level performance metrics were positively skewed, as predicted by the hypothesis that this population has experienced positive selection for constrained performance. We conclude that physiological limits on frequency modulation and respiration constrain song structure in male Adelaide’s warblers. Further work is needed to determine whether receivers respond to natural levels of variation in performance, and whether performance correlates with singer quality.

2021 ◽  
Vol 11 (13) ◽  
pp. 5859
Author(s):  
Fernando N. Santos-Navarro ◽  
Yadira Boada ◽  
Alejandro Vignoni ◽  
Jesús Picó

Optimal gene expression is central for the development of both bacterial expression systems for heterologous protein production, and microbial cell factories for industrial metabolite production. Our goal is to fulfill industry-level overproduction demands optimally, as measured by the following key performance metrics: titer, productivity rate, and yield (TRY). Here we use a multiscale model incorporating the dynamics of (i) the cell population in the bioreactor, (ii) the substrate uptake and (iii) the interaction between the cell host and expression of the protein of interest. Our model predicts cell growth rate and cell mass distribution between enzymes of interest and host enzymes as a function of substrate uptake and the following main lab-accessible gene expression-related characteristics: promoter strength, gene copy number and ribosome binding site strength. We evaluated the differential roles of gene transcription and translation in shaping TRY trade-offs for a wide range of expression levels and the sensitivity of the TRY space to variations in substrate availability. Our results show that, at low expression levels, gene transcription mainly defined TRY, and gene translation had a limited effect; whereas, at high expression levels, TRY depended on the product of both, in agreement with experiments in the literature.


Author(s):  
Gaurav Chaurasia ◽  
Arthur Nieuwoudt ◽  
Alexandru-Eugen Ichim ◽  
Richard Szeliski ◽  
Alexander Sorkine-Hornung

We present an end-to-end system for real-time environment capture, 3D reconstruction, and stereoscopic view synthesis on a mobile VR headset. Our solution allows the user to use the cameras on their VR headset as their eyes to see and interact with the real world while still wearing their headset, a feature often referred to as Passthrough. The central challenge when building such a system is the choice and implementation of algorithms under the strict compute, power, and performance constraints imposed by the target user experience and mobile platform. A key contribution of this paper is a complete description of a corresponding system that performs temporally stable passthrough rendering at 72 Hz with only 200 mW power consumption on a mobile Snapdragon 835 platform. Our algorithmic contributions for enabling this performance include the computation of a coarse 3D scene proxy on the embedded video encoding hardware, followed by a depth densification and filtering step, and finally stereoscopic texturing and spatio-temporal up-sampling. We provide a detailed discussion and evaluation of the challenges we encountered, as well as algorithm and performance trade-offs in terms of compute and resulting passthrough quality.;AB@The described system is available to users as the Passthrough+ feature on Oculus Quest. We believe that by publishing the underlying system and methods, we provide valuable insights to the community on how to design and implement real-time environment sensing and rendering on heavily resource constrained hardware.


2010 ◽  
Vol 67 (6) ◽  
pp. 417-431 ◽  
Author(s):  
Marta Beltrán ◽  
Antonio Guzmán ◽  
Fernando Sevillano

2021 ◽  
Vol 14 (5) ◽  
pp. 785-798
Author(s):  
Daokun Hu ◽  
Zhiwen Chen ◽  
Jianbing Wu ◽  
Jianhua Sun ◽  
Hao Chen

Persistent memory (PM) is increasingly being leveraged to build hash-based indexing structures featuring cheap persistence, high performance, and instant recovery, especially with the recent release of Intel Optane DC Persistent Memory Modules. However, most of them are evaluated on DRAM-based emulators with unreal assumptions, or focus on the evaluation of specific metrics with important properties sidestepped. Thus, it is essential to understand how well the proposed hash indexes perform on real PM and how they differentiate from each other if a wider range of performance metrics are considered. To this end, this paper provides a comprehensive evaluation of persistent hash tables. In particular, we focus on the evaluation of six state-of-the-art hash tables including Level hashing, CCEH, Dash, PCLHT, Clevel, and SOFT, with real PM hardware. Our evaluation was conducted using a unified benchmarking framework and representative workloads. Besides characterizing common performance properties, we also explore how hardware configurations (such as PM bandwidth, CPU instructions, and NUMA) affect the performance of PM-based hash tables. With our in-depth analysis, we identify design trade-offs and good paradigms in prior arts, and suggest desirable optimizations and directions for the future development of PM-based hash tables.


2018 ◽  
Vol 14 (11) ◽  
pp. 155014771881505 ◽  
Author(s):  
Ishtiaq Wahid ◽  
Ata Ul Aziz Ikram ◽  
Masood Ahmad ◽  
Fasee Ullah

With resource constraint’s distributed architecture and dynamic topology, network issues such as congestion, latency, power awareness, mobility, and other quality of service issues need to be addressed by optimizing the routing protocols. As a result, a number of routing protocols have been proposed. Routing protocols have trade-offs in performance parameters and their performance varies with the underlying mobility model. For designing an improved vehicular ad hoc network, three components of the network are to be focused: routing protocols, mobility models, and performance metrics. This article describes the relationship of these components, trade-offs in performance, and proposes a supervisory protocol, which monitors the scenario and detects the realistic mobility model through analysis of the microscopic features of the mobility model. An analytical model is used to determine the best protocol for a particular mobility model. The supervisory protocol then selects the best routing protocol for the mobility model of the current operational environment. For this, EstiNet 8.1 Simulator is used to validate the proposed scheme and compare its performance with existing schemes. Simulation results of the proposed scheme show the consistency in the performance of network throughout its operation.


2021 ◽  
Vol 21 (8) ◽  
pp. 2447-2460
Author(s):  
Stuart R. Mead ◽  
Jonathan Procter ◽  
Gabor Kereszturi

Abstract. The use of mass flow simulations in volcanic hazard zonation and mapping is often limited by model complexity (i.e. uncertainty in correct values of model parameters), a lack of model uncertainty quantification, and limited approaches to incorporate this uncertainty into hazard maps. When quantified, mass flow simulation errors are typically evaluated on a pixel-pair basis, using the difference between simulated and observed (“actual”) map-cell values to evaluate the performance of a model. However, these comparisons conflate location and quantification errors, neglecting possible spatial autocorrelation of evaluated errors. As a result, model performance assessments typically yield moderate accuracy values. In this paper, similarly moderate accuracy values were found in a performance assessment of three depth-averaged numerical models using the 2012 debris avalanche from the Upper Te Maari crater, Tongariro Volcano, as a benchmark. To provide a fairer assessment of performance and evaluate spatial covariance of errors, we use a fuzzy set approach to indicate the proximity of similarly valued map cells. This “fuzzification” of simulated results yields improvements in targeted performance metrics relative to a length scale parameter at the expense of decreases in opposing metrics (e.g. fewer false negatives result in more false positives) and a reduction in resolution. The use of this approach to generate hazard zones incorporating the identified uncertainty and associated trade-offs is demonstrated and indicates a potential use for informed stakeholders by reducing the complexity of uncertainty estimation and supporting decision-making from simulated data.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Robyn Jerdan ◽  
Scott Cameron ◽  
Emily Donaldson ◽  
Andrew Spiers

Static microcosms are a well-established system used to study the adaptive radiation of Pseudomonas fluorescens SBW25 and the adaptive biofilm-forming mutants known as the Wrinkly Spreaders (WS). We have developed this system to investigate selection within multi-species communities using a soil-wash inoculum dominated by biofilm-competent pseudomonads. Here we present community and isolate-level analyses of one serial-transfer experiment in which replicate populations were selected for over ten transfers and 60 days. Although no significant trends in improving community biofilm characteristics or total microcosm productivity were observed, a significant shift in biofilm-formation and microcosm growth by individual isolates recovered from the initial soil-wash inoculum and final transfers indicated that these communities were subject to selection for growth in these microcosms. Surprisingly, the fitness of the archetypal WS was poor when competing against community samples, and having compared the cell densities in the low-O2 region of liquid column below the biofilm, we suggest that part of the community’s fitness advantage comes from the ability to colonise this under-utilised niche as well as to compete at the A-L interface. Samples from the community biofilms and the low-O2 region were able to re-colonize both niches and many final transfer isolates grew throughout the liquid column as well as forming A-L interface biofilms. This suggests that there is a trade-off between fast growth under highly competitive conditions at the A-L interface and slower growth with less competition in the low-O2 region, with some isolates taking a bet-hedging approach a colonizing both niches in our microcosm system.


Author(s):  
Gioele Zardini ◽  
Nicolas Lanzetti ◽  
Marco Pavone ◽  
Emilio Frazzoli

Challenged by urbanization and increasing travel needs, existing transportation systems need new mobility paradigms. In this article, we present the emerging concept of autonomous mobility-on-demand, whereby centrally orchestrated fleets of autonomous vehicles provide mobility service to customers. We provide a comprehensive review of methods and tools to model and solve problems related to autonomous mobility-on-demand systems. Specifically, we first identify problem settings for their analysis and control, from both operational and planning perspectives. We then review modeling aspects, including transportation networks, transportation demand, congestion, operational constraints, and interactions with existing infrastructure. Thereafter, we provide a systematic analysis of existing solution methods and performance metrics, highlighting trends and trade-offs. Finally, we present various directions for further research. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 5 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Author(s):  
Stuart R. Mead ◽  
Jonathan Procter ◽  
Gabor Kereszturi

Abstract. The use of mass flow simulations in volcanic hazard zonation and mapping is often limited by model complexity (i.e. uncertainty in correct values of model parameters), a lack of model uncertainty quantification, and limited approaches to incorporate this uncertainty into hazard maps. When quantified, mass flow simulation errors are typically evaluated on a pixel-pair basis, using the difference between simulated and observed (actual) map-cell values to evaluate the performance of a model. However, these comparisons conflate location and quantification errors, neglecting possible spatial autocorrelation of evaluated errors. As a result, model performance assessments typically yield moderate accuracy values. In this paper, similarly moderate accuracy values were found in a performance assessment of three depth-averaged numerical models using the 2012 debris avalanche from the Upper Te Maari crater, Tongariro Volcano as a benchmark. To provide a fairer assessment of performance and evaluate spatial covariance of errors, we use a fuzzy set approach to indicate the proximity of similarly valued map cells. This fuzzification of simulated results yields improvements in targeted performance metrics relative to a length scale parameter, at the expense of decreases in opposing metrics (e.g. less false negatives results in more false positives) and a reduction in resolution. The use of this approach to generate hazard zones incorporating the identified uncertainty and associated trade-offs is demonstrated, and indicates a potential use for informed stakeholders by reducing the complexity of uncertainty estimation and supporting decision making from simulated data.


Sign in / Sign up

Export Citation Format

Share Document