scholarly journals A new family of Type VI secretion system-delivered effector proteins displays ion-selective pore-forming activity

2019 ◽  
Author(s):  
Giuseppina Mariano ◽  
Katharina Trunk ◽  
David J. Williams ◽  
Laura Monlezun ◽  
Henrik Strahl ◽  
...  

AbstractType VI secretion systems (T6SSs) are nanomachines widely used by bacteria to compete with rivals. T6SSs deliver multiple toxic effector proteins directly into neighbouring cells and play key roles in shaping diverse polymicrobial communities. A number of families of T6SS-dependent anti-bacterial effectors have been characterised, however the mode of action of others remains unknown. Here we report that Ssp6, an anti-bacterial effector delivered by theSerratia marcescensT6SS, is an ion-selective pore-forming toxin.In vivo, Ssp6 inhibits growth by causing depolarisation of the inner membrane of intoxicated cells and also leads to increased outer membrane permeability, whilst reconstruction of Ssp6 activityin vitrodemonstrated that it forms cation-selective pores. A survey of bacterial genomes revealed that Ssp6-like effectors are widespread in Enterobacteriaceae and often linked with T6SS genes. We conclude that Ssp6 represents a new family of T6SS-delivered anti-bacterial effectors, further diversifying the portfolio of weapons available for deployment during inter-bacterial conflict.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Giuseppina Mariano ◽  
Katharina Trunk ◽  
David J. Williams ◽  
Laura Monlezun ◽  
Henrik Strahl ◽  
...  

AbstractType VI secretion systems (T6SSs) are nanomachines widely used by bacteria to deliver toxic effector proteins directly into neighbouring cells. However, the modes of action of many effectors remain unknown. Here we report that Ssp6, an anti-bacterial effector delivered by a T6SS of the opportunistic pathogen Serratia marcescens, is a toxin that forms ion-selective pores. Ssp6 inhibits bacterial growth by causing depolarisation of the inner membrane in intoxicated cells, together with increased outer membrane permeability. Reconstruction of Ssp6 activity in vitro demonstrates that it forms cation-selective pores. A survey of bacterial genomes reveals that genes encoding Ssp6-like effectors are widespread in Enterobacteriaceae and often linked with T6SS genes. We conclude that Ssp6 and similar proteins represent a new family of T6SS-delivered anti-bacterial effectors.


2022 ◽  
Author(s):  
Siu Lung Ng ◽  
Sophia A. Kammann ◽  
Gabi Steinbach ◽  
Tobias Hoffmann ◽  
Peter J. Yunker ◽  
...  

Mutations in regulatory mechanisms that control gene expression contribute to phenotypic diversity and thus facilitate the adaptation of microbes to new niches. Regulatory architecture is often inferred from transcription factor identification and genome analysis using purely computational approaches. However, there are few examples of phenotypic divergence that arise from the rewiring of bacterial regulatory circuity by mutations in intergenic regions, because locating regulatory elements within regions of DNA that do not code for protein requires genomic and experimental data. We identify a single cis-acting single nucleotide polymorphism (SNP) dramatically alters control of the type VI secretion system (T6), a common weapon for inter-bacterial competition. Tight T6 regulatory control is necessary for adaptation of the waterborne pathogen Vibrio cholerae to in vivo conditions within the human gut, which we show can be altered by this single non-coding SNP that results in constitutive expression in vitro. Our results support a model of pathogen evolution through cis-regulatory mutation and preexisting, active transcription factors, thus conferring different fitness advantages to tightly regulated strains inside a human host and unfettered strains adapted to environmental niches.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Stephanie Sibinelli de Sousa ◽  
Julia Takuno Hespanhol ◽  
Bruno Matsuyama ◽  
Stephane Mesnage ◽  
Gianlucca Nicastro ◽  
...  

Type VI secretion systems (T6SSs) are contractile nanomachines widely used by bacteria to intoxicate competitors. Salmonella Typhimurium encodes a T6SS within the Salmonella pathogenicity island 6 (SPI-6) that is used during competition against species of the gut microbiota. We characterized a new SPI-6 T6SS antibacterial effector named Tlde1 (type VI L,D-transpeptidase effector 1). Tlde1 is toxic in target-cell periplasm and its toxicity is neutralized by co-expression with immunity protein Tldi1 (type VI L,D-transpeptidase immunity 1). Time-lapse microscopy revealed that intoxicated cells display altered cell division and lose cell envelope integrity. Bioinformatics analysis showed that Tlde1 is evolutionarily related to L,D-transpeptidases. Point mutations on conserved histidine121 and cysteine131 residues eliminated toxicity. Co-incubation of purified recombinant Tlde1 and peptidoglycan tetrapeptides showed that Tlde1 displays both L,D-carboxypeptidase activity by cleaving GM-tetrapeptides between meso-diaminopimelic acid3 and D-alanine4, and L,D-transpeptidase exchange activity by replacing D-alanine4 for a non-canonical D-amino acid. Tlde1 constitutes a new family of T6SS effectors widespread in Proteobacteria. This work increases our knowledge about the bacterial effectors used in interbacterial competitions and provides molecular insight into a new mechanism of bacterial antagonism.


2019 ◽  
Vol 5 (2) ◽  
pp. 50 ◽  
Author(s):  
Katharina Trunk ◽  
Sarah J. Coulthurst ◽  
Janet Quinn

Microbes typically exist in mixed communities and display complex synergistic and antagonistic interactions. The Type VI secretion system (T6SS) is widespread in Gram-negative bacteria and represents a contractile nano-machine that can fire effector proteins directly into neighbouring cells. The primary role assigned to the T6SS is to function as a potent weapon during inter-bacterial competition, delivering antibacterial effectors into rival bacterial cells. However, it has recently emerged that the T6SS can also be used as a powerful weapon against fungal competitors, and the first fungal-specific T6SS effector proteins, Tfe1 and Tfe2, have been identified. These effectors act via distinct mechanisms against a variety of fungal species to cause cell death. Tfe1 intoxication triggers plasma membrane depolarisation, whilst Tfe2 disrupts nutrient uptake and induces autophagy. Based on the frequent coexistence of bacteria and fungi in microbial communities, we propose that T6SS-dependent antifungal activity is likely to be widespread and elicited by a suite of antifungal effectors. Supporting this hypothesis, homologues of Tfe1 and Tfe2 are found in other bacterial species, and a number of T6SS-elaborating species have been demonstrated to interact with fungi. Thus, we envisage that antifungal T6SS will shape many polymicrobial communities, including the human microbiota and disease-causing infections.


2014 ◽  
Vol 82 (9) ◽  
pp. 3867-3879 ◽  
Author(s):  
Jiale Ma ◽  
Yinli Bao ◽  
Min Sun ◽  
Wenyang Dong ◽  
Zihao Pan ◽  
...  

ABSTRACTType VI secretion systems (T6SSs) are involved in the pathogenicity of several Gram-negative bacteria. The VgrG protein, a core component and effector of T6SS, has been demonstrated to perform diverse functions. The N-terminal domain of VgrG protein is a homologue of tail fiber protein gp27 of phage T4, which performs a receptor binding function and determines the host specificity. Based on sequence analysis, we found that two putative T6SS loci exist in the genome of the avian pathogenicEscherichia coli(APEC) strain TW-XM. To assess the contribution of these two T6SSs to TW-XM pathogenesis, the crucialclpVclusters of these two T6SS loci and theirvgrGgenes were deleted to generate a series of mutants. Consequently, T6SS1-associated mutants presented diminished adherence to and invasion of several host cell lines culturedin vitro, decreased pathogenicity in duck and mouse infection modelsin vivo, and decreased biofilm formation and bacterial competitive advantage. In contrast, T6SS2-associated mutants presented a significant decrease only in the adherence to and invasion of mouse brain microvascular endothelial cell (BMEC) line bEnd.3 and brain tissue of the duck infection model. These results suggested that T6SS1 was involved in the proliferation of APEC in systemic infection, whereas VgrG-T6SS2 was responsible only for cerebral infection. Further study demonstrated that VgrG-T6SS2 was able to bind to the surface of bEnd.3 cells, whereas it did not bind to DF-1 (chicken embryo fibroblast) cells, which further proved the interaction of VgrG-T6SS2 with the surface of BMECs.


2017 ◽  
Author(s):  
Savannah L. Logan ◽  
Jacob Thomas ◽  
Jinyuan Yan ◽  
Ryan P. Baker ◽  
Drew S. Shields ◽  
...  

AbstractHost-associated microbiota help defend against bacterial pathogens; the mechanisms that pathogens possess to overcome this defense, however, remain largely unknown. We developed a zebrafish model and used live imaging to directly study how the human pathogenVibrio choleraeinvades the intestine. The gut microbiota of fish mono-colonized by commensal strainAeromonas veroniiwas displaced byV. choleraeexpressing its Type VI Secretion System (T6SS), a syringe-like apparatus that deploys effector proteins into target cells. Surprisingly, displacement was independent of T6SS-mediated killing ofAeromonas, driven instead by T6SS-induced enhancement of zebrafish intestinal movements that led to expulsion of the resident commensal by the host. Deleting an actin crosslinking domain from the T6SS apparatus returned intestinal motility to normal and thwarted expulsion, without weakeningV. cholerae′sability to killAeromonas in vitro. Our finding that bacteria can manipulate host physiology to influence inter-microbial competition has implications for both pathogenesis and microbiome engineering.


Microbiology ◽  
2009 ◽  
Vol 155 (2) ◽  
pp. 498-512 ◽  
Author(s):  
Rembert Pieper ◽  
Shih-Ting Huang ◽  
Jeffrey M. Robinson ◽  
David J. Clark ◽  
Hamid Alami ◽  
...  

Yersinia pestis cells were grown in vitro at 26 and 37 °C, the ambient temperatures of its flea vector and its mammalian hosts, respectively, and subjected to subcellular fractionation. Abundance changes at 26 vs 37 °C were observed for many outer-membrane (OM) proteins. The cell adhesion protein Ail (y1324) and three putative small β-barrel OM proteins (y1795, y2167 and y4083) were strongly increased at 37 °C. The Ail/Lom family protein y1682 (OmpX) was strongly increased at 26 °C. Several porins and TonB-dependent receptors, which control small molecule transport through the OM, were also altered in abundance in a temperature-dependent manner. These marked differences in the composition of the OM proteome are probably important for the adaptation of Y. pestis to its in vivo life stages. Thirteen proteins that appear to be part of an intact type VI secretion system (T6SS) were identified in membrane fractions of stationary-phase cells grown at 26 °C, but not at 37 °C. The corresponding genes are clustered in the Y. pestis KIM gene locus y3658–y3677. The proteins y3674 and y3675 were particularly abundant and co-fractionated in a M r range indicative of participation in a multi-subunit complex. The soluble haemolysin-coregulated protein y3673 was even more abundant. Its release into the extracellular medium was triggered by treatment of Y. pestis cells with trypsin. Proteases and other stress-response-inducing factors may constitute environmental cues resulting in the activation of the T6SS in Y. pestis.


2011 ◽  
Vol 79 (4) ◽  
pp. 1512-1525 ◽  
Author(s):  
Mary N. Burtnick ◽  
Paul J. Brett ◽  
Sarah V. Harding ◽  
Sarah A. Ngugi ◽  
Wilson J. Ribot ◽  
...  

ABSTRACTTheBurkholderia pseudomalleiK96243genome encodes six type VI secretion systems (T6SSs), but little is known about the role of these systems in the biology ofB. pseudomallei. In this study, we purified recombinant Hcp proteins from each T6SS and tested them as vaccine candidates in the BALB/c mouse model of melioidosis. Recombinant Hcp2 protected 80% of mice against a lethal challenge withK96243, while recombinant Hcp1, Hcp3, and Hcp6 protected 50% of mice against challenge. Hcp6 was the only Hcp constitutively produced byB. pseudomallei in vitro; however, it was not exported to the extracellular milieu. Hcp1, on the other hand, was produced and exportedin vitrowhen the VirAG two-component regulatory system was overexpressed intrans. We also constructed sixhcpdeletion mutants (Δhcp1throughΔhcp6) and tested them for virulence in the Syrian hamster model of infection. The 50% lethal doses (LD50s) for theΔhcp2throughΔhcp6mutants were indistinguishable fromK96243(<10 bacteria), but the LD50for theΔhcp1mutant was >103bacteria. Thehcp1deletion mutant also exhibited a growth defect in RAW 264.7 macrophages and was unable to form multinucleated giant cells in this cell line. UnlikeK96243, theΔhcp1mutant was only weakly cytotoxic to RAW 264.7 macrophages 18 h after infection. The results suggest that the cluster 1 T6SS is essential for virulence and plays an important role in the intracellular lifestyle ofB. pseudomallei.


2019 ◽  
Vol 87 (10) ◽  
Author(s):  
Shaohui Wang ◽  
Denghui Yang ◽  
Xiaojun Wu ◽  
Zhengfei Yi ◽  
Yang Wang ◽  
...  

ABSTRACT Type VI secretion systems (T6SSs) are highly conserved and complex protein secretion systems that deliver effector proteins into eukaryotic hosts or other bacteria. T6SSs are regulated precisely by a variety of regulatory systems, which enables bacteria to adapt to varied environments. A T6SS within Salmonella pathogenicity island 6 (SPI-6) is activated during infection, and it contributes to the pathogenesis, as well as interbacterial competition, of Salmonella enterica serovar Typhimurium (S. Typhimurium). However, the regulation of the SPI-6 T6SS in S. Typhimurium is not well understood. In this study, we found that the SPI-6 T6SS core gene clpV was significantly upregulated in response to the iron-depleted condition and during infection. The global ferric uptake regulator (Fur) was shown to repress the clpV expression in the iron-replete medium. Moreover, electrophoretic mobility shift and DNase I footprinting assays revealed that Fur binds directly to the clpV promoter region at multiple sites spanning the transcriptional start site. We also observed that the relieving of Fur-mediated repression on clpV contributed to the interbacterial competition activity and pathogenicity of S. Typhimurium. These findings provide insights into the direct regulation of Fur in the expression and functional activity of SPI-6 T6SS in S. Typhimurium and thus help to elucidate the mechanisms of bacterial adaptability and virulence.


Sign in / Sign up

Export Citation Format

Share Document