scholarly journals Exogenous Protein as an Environmental Stimuli of Biofilm Formation in Select Bacterial Strains

2019 ◽  
Author(s):  
Donna Ye ◽  
Lekha Bapu ◽  
Mariane Mota Cavalcante ◽  
Jesse Kato ◽  
Maggie Lauria Sneideman ◽  
...  

ABSTRACTA screening of environmental conditions that would elicit robust biofilm in a collection ofSerratia marcescensisolated from soil revealed that exogenous milk protein increased biofilm productivity up to ten-fold. A select screening of fish pathogens, freshwater and human isolates identified several other species that responded similarly to exogenous protein. The optimal protein concentration was species specific;S. marcescensat 5% milk protein,Aeromonassp. at 2-3%,Flavobacterium columnareat 1% andPseudomonas aeruginosaat 0.1-0.4%. Media supplemented with milk protein also increased the cell counts in biofilm as well as the protein incorporated into the biofilm matrix. These data suggest that relatively high concentrations of exogenous protein may serve as an environmental trigger for biofilm formation, particularly for pathogenic bacteria exposed to relatively high concentrations of protein in bodily fluids and mucosal surfaces.

Surfaces ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 187-201 ◽  
Author(s):  
Faouzi Lamari ◽  
Sadok Khouadja ◽  
Sami Rtimi

Vibrio parahaemolyticus and Vibrio alginolyticus are important pathogenic agents for both humans and aquatic animals. Twenty-five bacterial strains were isolated from infected sea bass (Dicentrarchus labrax) on thiosulfate citrate bile salts sucrose (TCBS) agar plates. For the species-specific detection of V. alginolyticus and V. parahaemolyticus, a multiplex PCR assay using two collagenase-targeted primer pairs allows the detection of four strains of V. parahaemolyticus and three strains of V. alginolyticus. The seven identified isolates were partitioned for capsule production, hydrophobicity, adherence, biofilm formation, invasion, and cytotoxicity against Hep-2 cells. Two V. parahaemolyticus (Spa2 and Spa3) and one V. alginolyticus (Va01) were capsule producers developing almost black colonies on CRA, they showed a strong hydrophobicity using bacterial adhesion to hydrocarbons test (BATH), and were able to produce high biofilm. Isolates were able to adhere and invade Hep-2 cells and exhibited dissimilar levels of cytotoxicity in epithelial cells. This study shows the strong relationship between adhesion, biofilm formation, invasion and the cytotoxicity of Vibrio strains. Thus, we found a strong and significant positive correlation between different virulence properties of these isolates. The present study shows that bacterial contact with the cells as well as adhesion and invasion are essential steps to induce cytotoxicity. However, the invasion is seen to be a post adherence event.


2021 ◽  
Vol 22 (3) ◽  
pp. 51-63
Author(s):  
E.O. Igbinosa ◽  
A. Beshiru ◽  
E.E.O. Odjadjare

The present study was designed to characterize Enterococci isolates obtained from water samples at aquaculture and slaughterhouse facilities in Benin City, Nigeria. A total of 144 water samples were collected from aquaculture and slaughterhouse facilities. All samples were analyzed using classical microbiological and molecular-based methods. Enterococci were identified using specific primer sets (genus and species specific primers) and are as follows: E. faecalis 36 (25.5%); E. faecium 39 (27.7%); E. durans 19 (13.4%); E. casseliflavus 13 (9.2%); E. hirae 14 (9.9%) and other Enterococcus species 20 (14.2%). The resistance profile of the bacterial strains to antibiotics was as follows: [tetracycline (n=67, 47%)]; [vancomycin (n=74, 52%)]; [erythromycin (n=91, 64%)] and [penicillin (n=141, 100%)]. Enterococci virulence genes detected include: [gelE (n=120, 85.1%)]; [cylA (n= 52, 36.9%)]; [hyl (n=96, 68.1%)]; [esp (n=135, 95.8%)]; [ace (n= 127, 90.1%)] and [agg n=118, 83.7%)]. Antibiotic-resistant gene detected from the phenotypic resistant isolates were 55/74 (74.3%) vanA; 61/67 (91.1%) tetC; 122/141 (86.5%) blapse1 and 62/91 (68.1%) ermA. Antibiotic-resistant coupled with biofilm formation potential of Enterococcus species include penicillin+biofilm 116 (82.3%); erythromycin+biofilm 85 (60.3%); and vancomycin+biofilm 74 (52.3%). Findings from this study reveal that strains with the ability of forming biofilms have enhanced antimicrobial resistance. Continuous monitoring of slaughterhouses and aquaculture facilities is necessary to guarantee food safety. Key Words: Aquaculture, Biofilm,Enterococcus, Environments, Resistance, Slaughterhouse


2020 ◽  
Vol 21 (22) ◽  
pp. 8614
Author(s):  
Pongsiri Jaikumpun ◽  
Kasidid Ruksakiet ◽  
Balázs Stercz ◽  
Éva Pállinger ◽  
Martin Steward ◽  
...  

Cystic fibrosis (CF) is a hereditary disease caused by mutations in the gene encoding an epithelial anion channel. In CF, Cl− and HCO3− hyposecretion, together with mucin hypersecretion, leads to airway dehydration and production of viscous mucus. This habitat is ideal for colonization by pathogenic bacteria. We have recently demonstrated that HCO3− inhibits the growth and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus when tested in laboratory culture media. Using the same bacteria our aim was to investigate the effects of HCO3− in artificial sputum medium (ASM), whose composition resembles CF mucus. Control ASM containing no NaHCO3 was incubated in ambient air (pH 7.4 or 8.0). ASM containing NaHCO3 (25 and 100 mM) was incubated in 5% CO2 (pH 7.4 and 8.0, respectively). Viable P. aeruginosa and S. aureus cells were counted by colony-forming unit assay and flow cytometry after 6 h and 17 h of incubation. Biofilm formation was assessed after 48 h. The data show that HCO3− significantly decreased viable cell counts and biofilm formation in a concentration-dependent manner. These effects were due neither to extracellular alkalinization nor to altered osmolarity. These results show that HCO3− exerts direct antibacterial and antibiofilm effects on prevalent CF bacteria.


2020 ◽  
Vol 10 (03) ◽  
pp. 123-144
Author(s):  
Donna Ye ◽  
Lekha Bapu ◽  
Mariane Mota Cavalcante ◽  
Jesse Kato ◽  
Maggie Lauria Sneideman ◽  
...  

2020 ◽  
Vol 11 ◽  
pp. 37-43
Author(s):  
Prof. Teodora P. Popova ◽  
Toshka Petrova ◽  
Ignat Ignatov ◽  
Stoil Karadzhov

The antimicrobial action of the dietary supplement Oxidal® was tested using the classic Bauer and Kirby agar-gel diffusion method. Clinical and reference strains of Staphylococcus aureus and Escherichia coli were used in the studies. The tested dietary supplement showed a well-pronounced inhibitory effect against the microbial strains commensurable with that of the broad-spectrum chemotherapeutic agent Enrofloxacin and showed even higher activity than the broad spectrum antibiotic Thiamphenicol. The proven inhibitory effect of the tested dietary supplement against the examined pathogenic bacteria is in accordance with the established clinical effectiveness standards for antimicrobial agents.


2020 ◽  
Vol 21 (4) ◽  
pp. 270-286 ◽  
Author(s):  
Fazlurrahman Khan ◽  
Dung T.N. Pham ◽  
Sandra F. Oloketuyi ◽  
Young-Mog Kim

Background: The establishment of a biofilm by most pathogenic bacteria has been known as one of the resistance mechanisms against antibiotics. A biofilm is a structural component where the bacterial community adheres to the biotic or abiotic surfaces by the help of Extracellular Polymeric Substances (EPS) produced by bacterial cells. The biofilm matrix possesses the ability to resist several adverse environmental factors, including the effect of antibiotics. Therefore, the resistance of bacterial biofilm-forming cells could be increased up to 1000 times than the planktonic cells, hence requiring a significantly high concentration of antibiotics for treatment. Methods: Up to the present, several methodologies employing antibiotics as an anti-biofilm, antivirulence or quorum quenching agent have been developed for biofilm inhibition and eradication of a pre-formed mature biofilm. Results: Among the anti-biofilm strategies being tested, the sub-minimal inhibitory concentration of several antibiotics either alone or in combination has been shown to inhibit biofilm formation and down-regulate the production of virulence factors. The combinatorial strategies include (1) combination of multiple antibiotics, (2) combination of antibiotics with non-antibiotic agents and (3) loading of antibiotics onto a carrier. Conclusion: The present review paper describes the role of several antibiotics as biofilm inhibitors and also the alternative strategies adopted for applications in eradicating and inhibiting the formation of biofilm by pathogenic bacteria.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Olivia Nathalia ◽  
Diana Elizabeth Waturangi

Abstract Objective The objective of this research were to screen quorum quenching activity compound from phyllosphere bacteria as well as antibiofilm activity against several fish pathogen bacteria such as Aeromonas hydrophila, Streptococcus agalactiae, and Vibrio harveyi. Results We found eight phyllosphere bacteria isolates with potential quorum quenching activity to inhibit Chromobacterium violaceum as indicator bacteria. Crude extracts (20 mg/mL) showed various antibiofilm activity against fish pathogenic bacteria used in this study. Isolate JB 17B showed the highest activity to inhibit biofilm formation of A. hydrophila and V. harveyi, meanwhile isolate JB 3B showed the highest activity to inhibit biofilm of S. agalactiae. From destruction assay, isolate JB 8F showed the highest activity to disrupt biofilm of A. hydrophila isolate JB 20B showed the highest activity to disrupt biofilm of V. harveyi, isolate JB 17B also showed the highest activity to disrupt biofilm of S. agalactiae.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Adrienn Gréta Tóth ◽  
István Csabai ◽  
Gergely Maróti ◽  
Ákos Jerzsele ◽  
Attila Dubecz ◽  
...  

AbstractAntimicrobial resistance (AMR) is a global threat gaining more and more practical significance every year. The main determinants of AMR are the antimicrobial resistance genes (ARGs). Since bacteria can share genetic components via horizontal gene transfer, even non-pathogenic bacteria may provide ARG to any pathogens which they become physically close to (e.g. in the human gut). In addition, fermented food naturally contains bacteria in high amounts. In this study, we examined the diversity of ARG content in various kefir and yoghurt samples (products, grains, bacterial strains) using a unified metagenomic approach. We found numerous ARGs of commonly used fermenting bacteria. Even with the strictest filter restrictions, we identified ARGs undermining the efficacy of aminocoumarins, aminoglycosides, carbapenems, cephalosporins, cephamycins, diaminopyrimidines, elfamycins, fluoroquinolones, fosfomycins, glycylcyclines, lincosamides, macrolides, monobactams, nitrofurans, nitroimidazoles, penams, penems, peptides, phenicols, rifamycins, tetracyclines and triclosan. In the case of gene lmrD, we detected genetic environment providing mobility of this ARG. Our findings support the theory that during the fermentation process, the ARG content of foods can grow due to bacterial multiplication. The results presented suggest that the starting culture strains of fermented foods should be monitored and selected in order to decrease the intake of ARGs via foods.


2020 ◽  
Vol 9 (1) ◽  
pp. 37
Author(s):  
Silvia Di Lodovico ◽  
Franco Gasparri ◽  
Emanuela Di Campli ◽  
Paola Di Fermo ◽  
Simonetta D’Ercole ◽  
...  

Background: An unbalanced skin microbiota due to an increase in pathogenic vs. commensal bacteria can be efficiently tackled by using prebiotics. The aim of this work was to identify novel prebiotic combinations by exerting species-specific action between S. aureus and S. epidermidis strains. Methods: First, the antimicrobial/antibiofilm effect of Xylitol-XYL and Galacto-OligoSaccharides–GOS combined with each other at different concentrations (1, 2.5, 5%) against S. aureus and S. epidermidis clinical strains was evaluated in time. Second, the most species-specific concentration was used to combine XYL with Fructo-OligoSaccharides–FOS, IsoMalto-Oligosaccharides–IMO, ArabinoGaLactan–LAG, inulin, dextran. Experiments were performed by OD600 detection, biomass quantification and LIVE/DEAD staining. Results: 1% XYL + 1% GOS showed the best species-specific action with an immediate antibacterial/antibiofilm action against S. aureus strains (up to 34.54% ± 5.35/64.68% ± 4.77) without a relevant effect on S. epidermidis. Among the other prebiotic formulations, 1% XYL plus 1% FOS (up to 49.17% ± 21.46/37.59% ± 6.34) or 1% IMO (up to 41.28% ± 4.88/36.70% ± 10.03) or 1% LAG (up to 38.21% ± 5.31/83.06% ± 5.11) showed antimicrobial/antibiofilm effects similar to 1% XYL+1% GOS. For all tested formulations, a prevalent bacteriostatic effect in the planktonic phase and a general reduction of S. aureus biofilm formation without loss of viability were recorded. Conclusion: The combinations of 1% XYL with 1% GOS or 1% FOS or 1% IMO or 1% LAG may help to control the balance of skin microbiota, representing good candidates for topic formulations.


2021 ◽  
pp. 088391152110142
Author(s):  
Velu Gomathy ◽  
Venkatesan Manigandan ◽  
Narasimman Vignesh ◽  
Aavula Thabitha ◽  
Ramachandran Saravanan

Biofilms play a key role in infectious diseases, as they may form on the surface and persist after treatment with various antimicrobial agents. The Staphylococcus aureus, Klebsiella pneumoniae, S. typhimurium, P. aeruginosa, and Escherichia coli most frequently associated with medical devices. Chitosan sulphate from marine litter (SCH-MW) was extracted and the mineral components were determined using atomic absorption spectroscopy (AAS). The degree of deacetylation (DA) of SCH was predicted 50% and 33.3% in crab and shrimp waste respectively. The elucidation of the structure of the SCH-MW was portrayed using FT-IR and 1H-NMR spectroscopy. The molecular mass of SCH-MW was determined with Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF). The teratogenicity of SCH-MW was characterized by the zebrafish embryo (ZFE) model. Antimicrobial activity of SCH-MW was tested with the agar well diffusion method; the inhibitory effect of SCH-MW on biofilm formation was assessed in 96 flat well polystyrene plates. The result revealed that a low concentration of crab-sulfated chitosan inhibited bacterial growth and significantly reduced the anti-biofilm activity of gram-negative and gram-positive bacteria relatively to shrimp. It is potentially against the biofilm formation of pathogenic bacteria.


Sign in / Sign up

Export Citation Format

Share Document