scholarly journals Regulating Soil Bacterial Diversity, Enzyme Activities and Community Composition Using Residues from Golden Apple Snails

2019 ◽  
Author(s):  
Jiaxin Wang ◽  
Xuening Lu ◽  
Jiaen Zhang ◽  
Guangchang Wei ◽  
Yue Xiong

AbstractGolden apple snails (GAS) have become a serious pest for agricultural production in Asia. A sustainable method for managing GAS is urgently needed, including potentially using them to produce commercial products. In this study, we evaluate the effects of GAS residues (shell and meat) on soil pH, bacterial diversity, enzyme activities, and other soil characteristics. Results showed that the amendment of GAS residues significantly elevated soil pH (to near-neutral), total organic carbon (TOC) (by 10-134%), NO3-N (by 46-912%), NH4-N (by 18-168%) and total nitrogen (TN) (by 12-132%). Bacterial diversity increased 13% at low levels of amendment and decreased 5% at high levels, because low-levels of GAS residues increased soil pH to near-neutral, while high-levels of amendment substantially increased soil nutrients and subsequently suppressed bacterial diversity. The dominant phyla of bacteria were: Proteobacteria (about 22%), Firmicutes (15-35%), Chloroflexi (12%-22%), Actinobacteria (8%-20%) Acidobacteria, Gemmatimonadetes, Cyanobacteria and Bacterioidetes. The amendment of GAS residues significantly increased the relative abundance of Firmicutes, Gemmatimonadetes, Bacterioidetes and Deinococcus-Thermus, but significantly decreased the relative abundance of Chloroflexi, Actinobacteria, Acidobacteria, Cyanobacteria and Planctomycetes. Our results suggest that GAS residues treatment induces a near-neutral and nutrient-rich soil. In this soil, soil pH may not be the best predictor of bacterial community composition or diversity; rather soil nutrients (ie., NH4-N and NO3-N) and soil TOC showed stronger correlations with bacterial community composition. Overall, GAS residues could replace lime for remediation of acidic and degraded soils, not only to remediate physical soil properties, but also microbial communities.ImportanceThe wide spreading golden apple snail (GAS) is a harmful pest to crop productions and could result in soil and air pollutions after death. In the previous study, we developed a biocontrol method: adding GAS residues to acidic soil to mitigate the living GAS invasion and spread, improve soil quality, and reduce soil and air pollution. However, the effects of GAS residues amendment on bacterial diversity and community still remain unclear. This study provided insights into bacterial diversity and community compositions to facilitate the evaluation of GAS residues application.

Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 746
Author(s):  
Shuxiu Fan ◽  
Jiacheng Zuo ◽  
Hangyu Dong

Changes in soil physicochemical properties and bacterial community composition were investigated six years after biochar amendment at 0%, 4%, 8% and 12% (w/w), which were coded as C0, C1, C2 and C3, respectively. Results showed that some soil characteristics were sustainable, as they were still affected by biochar addition after six years. Compared to the control, biochar-treated soils had higher pH, total carbon (TC), C/N, total nitrogen (TN), available phosphorus (AP) and available potassium (AK). Soil pH, C/N and the content of TC, TN and AK all increased along with the increase of biochar dosage. The results of Illumina MiSeq sequencing demonstrated that biochar enhanced soil bacteria diversity and modified the community composition over time. The relative abundance of Nitrospirae and Verrucomicrobia phylum increased but that of Acidobacteria phylum decreased significantly in biochar amended soils. The addition of biochar also enriched some bacterial genera, such as uncultured Nitrosomonadace, uncultured Gemmatimonadac, uncultured Nitrospiraceae and Magnetovibrio. In particular, the relative abundance of uncultured Nitrospiraceae was enhanced by 16.9%, 42.8% and 73.6% in C1, C2 and C3, respectively, compared to C0. Biochar has a potential role in enhancing the abundance of bacteria involved in N cycling. Soil pH, TC, TN, TK and AK, were closely related to alterations in the composition of the soil bacterial community. Meanwhile, these soil properties were significantly influenced by biochar amendment, which indicates that biochar affected the soil microbial community indirectly by altering the soil characteristics in the long term.


Soil Research ◽  
2018 ◽  
Vol 56 (2) ◽  
pp. 123 ◽  
Author(s):  
Ahuva Vonshak ◽  
Menachem Y. Sklarz ◽  
Ann M. Hirsch ◽  
Osnat Gillor

Underneath the canopy of perennials in arid regions, moderate soil temperature and evaporation, as well as plant litter create islands of higher fertility in the low-productivity landscape, known as ‘resource islands’. The sparse distribution of these resource islands is mirrored by soil microbial communities, which mediate a large number of biogeochemical transformations underneath the plants. We explored the link between the bacterial community composition and two prevalent desert shrubs, Zygophyllum dumosum and Artemisia herba-alba, on northern- and southern-facing slopes in the northern highlands of the Negev Desert (Israel), at the end of a drought winter mild rainy season. We sequenced the bacterial community and analysed the physicochemical properties of the soil under the shrub canopies and from barren soil in replicate slopes. The soil bacterial diversity was independent of slope aspect, but differed according to shrub presence or type. Links between soil bacterial community composition and their associated desert shrubs were found, enabling us to link bacterial diversity with shrub type or barren soils. Our results suggest that plants and their associated bacterial communities are connected to survival and persistence under the harsh desert conditions.


2020 ◽  
Vol 40 (5) ◽  
Author(s):  
尹国丽 YIN Guoli ◽  
李亚娟 LI Yajuan ◽  
张振粉 ZHANG Zhenfen ◽  
李小龙 LI Xiaolong ◽  
张晓燕 ZHANG Xiaoyan ◽  
...  

2020 ◽  
Author(s):  
Ingeborg J. Klarenberg ◽  
Christoph Keuschnig ◽  
Denis Warshan ◽  
Ingibjörg Svala Jónsdóttir ◽  
Oddur Vilhelmsson

AbstractLichens are traditionally defined as a symbiosis between a fungus and a green alga and or a cyanobacterium. This idea has been challenged by the discovery of bacterial communities inhabiting the lichen thalli. These bacteria are thought to contribute to the survival of lichens under extreme and changing environmental conditions. How these changing environmental conditions affect the lichen-associated bacterial community composition remains unclear.We describe the total (rDNA-based) and potentially metabolically active (rRNA-based) bacterial community of the lichen Cetaria islandica and its response to long-term warming using a 20-year warming experiment in an Icelandic sub-Arctic tundra. 16S rRNA and rDNA amplicon sequencing showed that the orders Acetobacterales (of the class Alphaproteobacteria) and Acidobacteriales (of the phylum Acidobacteria) dominated the bacterial community. Numerous ASVs (amplicon sequence variants) taxa could only be detected in the potentially active community but not in the total community. Long-term warming led to increases in relative abundance on class, order and ASV level. Warming altered the relative abundance of ASVs of the most common bacterial genera, such as Granulicella and Endobacter. The potentially metabolically active bacterial community was also more responsive to warming than the total community.Our results suggest that the bacterial community of the lichen C. islandica is dominated by acidophilic taxa and harbors disproportionally active rare taxa. We also show for the first time that climate warming can lead to shifts in lichen-associated bacterial community composition.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jia-nan Dong ◽  
Song-ze Li ◽  
Xue Chen ◽  
Gui-xin Qin ◽  
Tao Wang ◽  
...  

High levels of starch is known to have positive effects on both energy supply and milk yield but increases the risk of rumen acidosis. The use of sugar as a non-structural carbohydrate could circumvent this risk while maintaining the benefits, but its effects and that of the simultaneous use of both sugar and starch are not as well-understood. This study aimed to evaluate the effects of different combinations of sugar and starch concentrations on ruminal fermentation and bacterial community composition in vitro in a 4 ×4 factorial experiment. Sixteen dietary treatments were formulated with 4 levels of sugar (6, 8, 10, and 12% of dietary dry matter), and 4 levels of starch (21, 23, 25, and 27% of dietary dry matter). Samples were taken at 0.5, 1, 3, 6, 12, and 24 h after cultivation to determine the disappearance rate of dry matter, rumen fermentation parameters and bacterial community composition. Butyric acid, gas production, and Treponema abundance were significantly influenced by the sugar level. The pH, acetic acid, and propionic acid levels were significantly influenced by starch levels. However, the interactive effect of sugar and starch was only observed on the rate of dry matter disappearance. Furthermore, different combinations of starch and sugar had different effects on volatile fatty acid production rate, gas production rate, and dry matter disappearance rate. The production rate of rumen fermentation parameters in the high sugar group was higher. Additionally, increasing the sugar content in the diet did not change the main phylum composition in the rumen, but significantly increased the relative abundance of Bacteroidetes and Firmicutes phyla, while the relative abundance of Proteobacteria was reduced. At the genus level, the high glucose group showed significantly higher relative abundance of Treponema (P < 0.05) and significantly lower relative abundance of Ruminobacter, Ruminococcus, and Streptococcus (P < 0.05). In conclusion, different combinations of sugar and starch concentrations have inconsistent effects on rumen fermentation characteristics, suggesting that the starch in diets cannot be simply replaced with sugar; the combined effects of sugar and starch should be considered to improve the feed utilization rate.


2018 ◽  
Vol 64 (No. 12) ◽  
pp. 571-577 ◽  
Author(s):  
Chen Yanling ◽  
Liu Jintao ◽  
Liu Shutang

Soil bacteria are critical to maintain soil fertility. In this study, soil chemical properties, enzyme activities and soil bacterial community from a long-term fertilizer experiment (37 years) were analysed to elaborate the effects of long-term mineral fertilizer application on soil enzyme activities and bacterial community composition. Compared with control treatment, bacterial community richness was reduced in low nitrogen (N) fertilizer and high N fertilizer treatments and increased in high N fertilizer and phosphorus (P), high N fertilizer and potassium (K) (N2K), and high N fertilizer, P and K (N2PK) treatments. The distribution of each phylum and genera was obviously changed and the range of the dominant phyla was not affected in all fertilization treatments. Principal component analysis showed that soil bacterial community in the N2K treatment was clearly different than in the N2PK treatment. The N2PK treatment had much higher available P, total organic carbon, invertase, urease and phosphatase activities than the N2K treatment, which might change soil bacterial community composition. In conclusion, fertilization with combined application of P, K and N in appropriate proportions is an optimum approach for improving soil quality and soil bacterial community abundance in non-calcareous fluro-aquic soils in the North China Plain.


Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 150
Author(s):  
Yang Liu ◽  
Jinjun Kan ◽  
Jing Yang ◽  
Md Abu Noman ◽  
Jun Sun

Skeletonema dohrnii is a common red tide microalgae occurring in the coastal waters and throughout the world. The associated heterotrophic or autotrophic bacteria play vital roles in regulating algal growth, production, and physiology. In this study, we investigated the detailed bacterial community structure associated with the growth of S. dohrnii’s using high-throughput sequencing-based on 16S rDNA. Our results demonstrated that Bacteroidetes (48.04%) and Proteobacteria (40.66%) in all samples accounted for the majority of bacterial populations. There was a significant linear regression relationship between the abundance of bacterial phyla and culture time. Notable shifts in bacterial community composition were observed during algal growth: Flavobacteriales accounted for the vast majority of sequences at the order level. Furthermore, the relative abundance of Rhodobacterales was gradually reduced during the whole growth process of S. dohrnii (0–12 days). However, beyond that, the relative abundance of Marinobacter was slowly increasing. It is noteworthy that five fluorophores (Peaks T1, T2, I, M, and A) were detected during the growth stage of S. dohrnii. The characteristic indexes (fluorescence index, humification index, and biological index) of chromophoric dissolved organic matter (CDOM) also varied with the culture time. In addition, the taxa of bacteria had certain effects on CDOM and they were inextricably linked to each other.


Author(s):  
Yinhong Hu ◽  
Weiwei Yu ◽  
Bowen Cui ◽  
Yuanyuan Chen ◽  
Hua Zheng ◽  
...  

Human disturbance and vegetation are known to affect soil microorganisms. However, the interacting effects of pavement and plant species on soil bacterial communities have received far less attention. In this study, we collected soil samples from pine (Pinus tabuliformis Carr.), ash (Fraxinus chinensis), and maple (Acer truncatum Bunge) stands that grew in impervious, pervious, and no pavement blocks to investigate the way pavement, tree species, and their interaction influence soil bacterial communities by modifying soil physicochemical properties. Soil bacterial community composition and diversity were evaluated by bacterial 16S amplicon sequencing. The results demonstrated that soil bacterial community composition and diversity did differ significantly across pavements, but not with tree species. The difference in soil bacterial community composition across pavements was greater in pine stands than ash and maple stands. Soil bacterial diversity and richness indices decreased beneath impervious pavement in pine stands, and only bacterial richness indices decreased markedly in ash stands, but neither showed a significant difference across pavements in maple stands. In addition, bacterial diversity did not differ dramatically between pervious pavement and no pavement soil. Taken together, these results suggest that pavement overwhelmed the effects of tree species on soil bacterial communities, and had a greater effect on soil bacterial communities in pine stands, followed by ash and maple stands. This study highlights the importance of anthropogenic disturbance, such as pavement, which affects soil microbial communities.


2014 ◽  
Vol 44 (4) ◽  
pp. 922-930 ◽  
Author(s):  
Daniel J. Smith ◽  
Alison C. Badrick ◽  
Martha Zakrzewski ◽  
Lutz Krause ◽  
Scott C. Bell ◽  
...  

Chronic airway infection in adults with cystic fibrosis (CF) is polymicrobial and the impact of intravenous antibiotics on the bacterial community composition is poorly understood. We employed culture-independent molecular techniques to explore the early effects of i.v. antibiotics on the CF airway microbiome.DNA was extracted from sputum samples collected from adult subjects with CF at three time-points (before starting treatment, and at day 3 and day 8–10 of i.v. antibiotics) during treatment of an infective pulmonary exacerbation. Microbial community profiles were derived through analysis of bacterial-derived 16S ribosomal RNA by pyrosequencing and changes over time were compared.59 sputum samples were collected during 24 pulmonary exacerbations from 23 subjects. Between treatment onset and day 3 there was a significant reduction in the relative abundance of Pseudomonas and increased microbial diversity. By day 8–10, bacterial community composition was similar to pre-treatment. Changes in community composition did not predict improvements in lung function.The relative abundance of Pseudomonas falls rapidly in subjects with CF receiving i.v. antibiotic treatment for a pulmonary exacerbation and is accompanied by an increase in overall microbial diversity. However, this effect is not maintained beyond the first week of treatment.


Sign in / Sign up

Export Citation Format

Share Document