scholarly journals A single-cell expression simulator guided by gene regulatory networks

2019 ◽  
Author(s):  
Payam Dibaeinia ◽  
Saurabh Sinha

AbstractA common approach to benchmarking of single-cell transcriptomics tools is to generate synthetic data sets that resemble experimental data in their statistical properties. However, existing single-cell simulators do not incorporate known principles of transcription factor-gene regulatory interactions that underlie expression dynamics. Here we present SERGIO, a simulator of single-cell gene expression data that models the stochastic nature of transcription as well as linear and non-linear influences of multiple transcription factors on genes according to a user-provided gene regulatory network. SERGIO is capable of simulating any number of cell types in steady-state or cells differentiating to multiple fates according to a provided trajectory, reporting both unspliced and spliced transcript counts in single-cells. We show that data sets generated by SERGIO are comparable with experimental data in terms of multiple statistical measures. We also illustrate the use of SERGIO to benchmark several popular single-cell analysis tools, including GRN inference methods.

2014 ◽  
Vol 11 (2) ◽  
pp. 68-79
Author(s):  
Matthias Klapperstück ◽  
Falk Schreiber

Summary The visualization of biological data gained increasing importance in the last years. There is a large number of methods and software tools available that visualize biological data including the combination of measured experimental data and biological networks. With growing size of networks their handling and exploration becomes a challenging task for the user. In addition, scientists also have an interest in not just investigating a single kind of network, but on the combination of different types of networks, such as metabolic, gene regulatory and protein interaction networks. Therefore, fast access, abstract and dynamic views, and intuitive exploratory methods should be provided to search and extract information from the networks. This paper will introduce a conceptual framework for handling and combining multiple network sources that enables abstract viewing and exploration of large data sets including additional experimental data. It will introduce a three-tier structure that links network data to multiple network views, discuss a proof of concept implementation, and shows a specific visualization method for combining metabolic and gene regulatory networks in an example.


2020 ◽  
Vol 52 (10) ◽  
pp. 468-477
Author(s):  
Alexander C. Zambon ◽  
Tom Hsu ◽  
Seunghee Erin Kim ◽  
Miranda Klinck ◽  
Jennifer Stowe ◽  
...  

Much of our understanding of the regulatory mechanisms governing the cell cycle in mammals has relied heavily on methods that measure the aggregate state of a population of cells. While instrumental in shaping our current understanding of cell proliferation, these approaches mask the genetic signatures of rare subpopulations such as quiescent (G0) and very slowly dividing (SD) cells. Results described in this study and those of others using single-cell analysis reveal that even in clonally derived immortalized cancer cells, ∼1–5% of cells can exhibit G0 and SD phenotypes. Therefore to enable the study of these rare cell phenotypes we established an integrated molecular, computational, and imaging approach to track, isolate, and genetically perturb single cells as they proliferate. A genetically encoded cell-cycle reporter (K67p-FUCCI) was used to track single cells as they traversed the cell cycle. A set of R-scripts were written to quantify K67p-FUCCI over time. To enable the further study G0 and SD phenotypes, we retrofitted a live cell imaging system with a micromanipulator to enable single-cell targeting for functional validation studies. Single-cell analysis revealed HT1080 and MCF7 cells had a doubling time of ∼24 and ∼48 h, respectively, with high duration variability in G1 and G2 phases. Direct single-cell microinjection of mRNA encoding (GFP) achieves detectable GFP fluorescence within ∼5 h in both cell types. These findings coupled with the possibility of targeting several hundreds of single cells improves throughput and sensitivity over conventional methods to study rare cell subpopulations.


2021 ◽  
Author(s):  
Nathanael Andrews ◽  
Martin Enge

Abstract CIM-seq is a tool for deconvoluting RNA-seq data from cell multiplets (clusters of two or more cells) in order to identify physically interacting cell in a given tissue. The method requires two RNAseq data sets from the same tissue: one of single cells to be used as a reference, and one of cell multiplets to be deconvoluted. CIM-seq is compatible with both droplet based sequencing methods, such as Chromium Single Cell 3′ Kits from 10x genomics; and plate based methods, such as Smartseq2. The pipeline consists of three parts: 1) Dissociation of the target tissue, FACS sorting of single cells and multiplets, and conventional scRNA-seq 2) Feature selection and clustering of cell types in the single cell data set - generating a blueprint of transcriptional profiles in the given tissue 3) Computational deconvolution of multiplets through a maximum likelihood estimation (MLE) to determine the most likely cell type constituents of each multiplet.


2020 ◽  
Author(s):  
Jeremy Lombardo ◽  
Marzieh Aliaghaei ◽  
Quy Nguyen ◽  
Kai Kessenbrock ◽  
Jered Haun

Abstract Tissues are composed of highly heterogeneous mixtures of cell subtypes, and this diversity is increasingly being characterized using high-throughput single cell analysis methods. However, these efforts are hindered by the fact that tissues must first be dissociated into single cell suspensions that are viable and still accurately represent phenotypes from the original tissue. Current methods for breaking down tissues are inefficient, labor-intensive, subject to high variability, and potentially biased towards cell subtypes that are easier to release. Here, we present a microfluidic platform consisting of three different tissue processing technologies that can perform the complete tissue to single cell workflow, including digestion, disaggregation, and filtration. First, we developed a new microfluidic digestion device that can be loaded with minced tissue specimens quickly and easily, and then use the combination of proteolytic enzyme activity and fluid shear forces to accelerate tissue breakdown. Next, we integrated dissociation and filter technologies into a single device, which enhanced single cell numbers and fully prepared the sample for single cell analysis. The final multi-device platform was then evaluated using a diverse array of tissue types that exhibited a wide range of properties. For murine kidney and mammary tumor, we found that microfluidic processing produced 2.5-fold more single, viable cells. Single cell RNA sequencing (scRNA-seq) further revealed that device processing enriched for endothelial cells, fibroblasts, and basal epithelium, and did not increase stress responses. For murine liver and heart, which are softer tissues containing fragile cell types, processing time could be reduced to 15 min, and even as short as 1 min. We also demonstrated that periodic recovery at defined time intervals produced substantially more hepatocytes and cardiomyocytes than continuous operation, most likely by preventing damage to fragile cell types. In future work, we will seek to integrate additional operations such as upstream tissue preparation and downstream microfluidic cell sorting and detection to create powerful point-of-care single cell diagnostic platforms.


2018 ◽  
Author(s):  
Jingtian Zhou ◽  
Jianzhu Ma ◽  
Yusi Chen ◽  
Chuankai Cheng ◽  
Bokan Bao ◽  
...  

3D genome structure plays a pivotal role in gene regulation and cellular function. Single-cell analysis of genome architecture has been achieved using imaging and chromatin conformation capture methods such as Hi-C. To study variation in chromosome structure between different cell types, computational approaches are needed that can utilize sparse and heterogeneous single-cell Hi-C data. However, few methods exist that are able to accurately and efficiently cluster such data into constituent cell types. Here, we describe HiCluster, a single-cell clustering algorithm for Hi-C contact matrices that is based on imputations using linear convolution and random walk. Using both simulated and real data as benchmarks, HiCluster significantly improves clustering accuracy when applied to low coverage Hi-C datasets compared to existing methods. After imputation by HiCluster, structures similar to topologically associating domains (TADs) could be identified within single cells, and their consensus boundaries among cells were enriched at the TAD boundaries observed in bulk samples. In summary, HiCluster facilitates visualization and comparison of single-cell 3D genomes.


2019 ◽  
Author(s):  
Soumya Korrapati ◽  
Ian Taukulis ◽  
Rafal Olszewski ◽  
Madeline Pyle ◽  
Shoujun Gu ◽  
...  

AbstractThe stria vascularis (SV) generates the endocochlear potential (EP) in the inner ear and is necessary for proper hair cell mechanotransduction and hearing. While channels belonging to SV cell types are known to play crucial roles in EP generation, relatively little is known about gene regulatory networks that underlie the ability of the SV to generate and maintain the EP. Using single cell and single nucleus RNA-sequencing, we identify and validate known and rare cell populations in the SV. Furthermore, we establish a basis for understanding molecular mechanisms underlying SV function by identifying potential gene regulatory networks as well as druggable gene targets. Finally, we associate known deafness genes with adult SV cell types. This work establishes a basis for dissecting the genetic mechanisms underlying the role of the SV in hearing and will serve as a basis for designing therapeutic approaches to hearing loss related to SV dysfunction.


2020 ◽  
Author(s):  
Andreas Fønss Møller ◽  
Kedar Nath Natarajan

AbstractRecent single-cell RNA-sequencing atlases have surveyed and identified major cell-types across different mouse tissues. Here, we computationally reconstruct gene regulatory networks from 3 major mouse cell atlases to capture functional regulators critical for cell identity, while accounting for a variety of technical differences including sampled tissues, sequencing depth and author assigned cell-type labels. Extracting the regulatory crosstalk from mouse atlases, we identify and distinguish global regulons active in multiple cell-types from specialised cell-type specific regulons. We demonstrate that regulon activities accurately distinguish individual cell types, despite differences between individual atlases. We generate an integrated network that further uncovers regulon modules with coordinated activities critical for cell-types, and validate modules using available experimental data. Inferring regulatory networks during myeloid differentiation from wildtype and Irf8 KO cells, we uncover functional contribution of Irf8 regulon activity and composition towards monocyte lineage. Our analysis provides an avenue to further extract and integrate the regulatory crosstalk from single-cell expression data.SummaryIntegrated single-cell gene regulatory network from three mouse cell atlases captures global and cell-type specific regulatory modules and crosstalk, important for cellular identity.


2021 ◽  
Author(s):  
Melanie I Worley ◽  
Nicholas Everetts ◽  
Riku Yasutomi ◽  
Nir Yosef ◽  
Iswar K Hariharan

Whether regeneration is primarily accomplished by re-activating gene regulatory networks used previously during development or by activating novel regeneration-specific transcriptional programs remains a longstanding question. Currently, most genes implicated in regeneration also function during development. Using single-cell transcriptomics in regenerating Drosophila wing discs, we identified two regeneration-specific cell populations within the blastema. They are each composed of cells that upregulate multiple genes encoding secreted proteins that promote regeneration. In this regenerative secretory zone, the transcription factor Ets21C controls the expression of multiple regeneration-promoting genes. While eliminating Ets21C function has no discernible effect on development, it severely compromises regeneration. This Ets21C-dependent gene regulatory network is also activated in blastema-like cells in tumorous discs, suggesting that pro-regenerative mechanisms can be co-opted by tumors to promote aberrant growth.


2018 ◽  
Author(s):  
Changlin Wan ◽  
Wennan Chang ◽  
Yu Zhang ◽  
Fenil Shah ◽  
Xiaoyu Lu ◽  
...  

ABSTRACTA key challenge in modeling single-cell RNA-seq (scRNA-seq) data is to capture the diverse gene expression states regulated by different transcriptional regulatory inputs across single cells, which is further complicated by a large number of observed zero and low expressions. We developed a left truncated mixture Gaussian (LTMG) model that stems from the kinetic relationships between the transcriptional regulatory inputs and metabolism of mRNA and gene expression abundance in a cell. LTMG infers the expression multi-modalities across single cell entities, representing a gene’s diverse expression states; meanwhile the dropouts and low expressions are treated as left truncated, specifically representing an expression state that is under suppression. We demonstrated that LTMG has significantly better goodness of fitting on an extensive number of single-cell data sets, comparing to three other state of the art models. In addition, our systems kinetic approach of handling the low and zero expressions and correctness of the identified multimodality are validated on several independent experimental data sets. Application on data of complex tissues demonstrated the capability of LTMG in extracting varied expression states specific to cell types or cell functions. Based on LTMG, a differential gene expression test and a co-regulation module identification method, namely LTMG-DGE and LTMG-GCR, are further developed. We experimentally validated that LTMG-DGE is equipped with higher sensitivity and specificity in detecting differentially expressed genes, compared with other five popular methods, and that LTMG-GCR is capable to retrieve the gene co-regulation modules corresponding to perturbed transcriptional regulations. A user-friendly R package with all the analysis power is available at https://github.com/zy26/LTMGSCA.


Sign in / Sign up

Export Citation Format

Share Document