scholarly journals Rapid degradation of C. elegans proteins at single-cell resolution with a synthetic auxin

2019 ◽  
Author(s):  
Michael A. Q. Martinez ◽  
Brian A. Kinney ◽  
Taylor N. Medwig-Kinney ◽  
Guinevere Ashley ◽  
James M. Ragle ◽  
...  

ABSTRACTAs developmental biologists in the age of genome editing, we now have access to an ever-increasing array of tools to manipulate endogenous gene expression. The auxin-inducible degradation system, allows for spatial and temporal control of protein degradation, functioning through the activity of a hormone-inducible Arabidopsis F-box protein, transport inhibitor response 1 (TIR1). In the presence of auxin, TIR1 serves as a substrate recognition component of the E3 ubiquitin ligase complex SKP1-CUL1-F-box (SCF), ubiquitinating auxin-inducible degron (AID)-tagged proteins for proteasomal degradation. Here, we optimize the Caenorhabditis elegans AID method, utilizing 1-naphthaleneacetic acid (NAA), an indole-free synthetic analog of the natural auxin indole-3-acetic acid (IAA). We take advantage of the photostability of NAA to demonstrate via quantitative high-resolution microscopy that rapid degradation of target proteins can be detected in single cells within 30 minutes of exposure. Additionally, we show that NAA works robustly in both standard growth media and physiological buffer. We also demonstrate that K-NAA, the water-soluble, potassium salt of NAA, can be combined with microfluidics for targeted protein degradation in C. elegans larvae. We provide insight into how the AID system functions in C. elegans by determining that TIR1 interacts with C. elegans SKR-1/2, CUL-1, and RBX-1 to degrade target proteins. Finally, we present highly penetrant defects from NAA-mediated degradation of the Ftz-F1 nuclear hormone receptor, NHR-25, during C. elegans uterine-vulval development. Together, this work provides a conceptual improvement to the AID system for dissecting gene function at the single-cell level during C. elegans development.

2019 ◽  
Vol 10 (1) ◽  
pp. 267-280 ◽  
Author(s):  
Michael A. Q. Martinez ◽  
Brian A. Kinney ◽  
Taylor N. Medwig-Kinney ◽  
Guinevere Ashley ◽  
James M. Ragle ◽  
...  

As developmental biologists in the age of genome editing, we now have access to an ever-increasing array of tools to manipulate endogenous gene expression. The auxin-inducible degradation system allows for spatial and temporal control of protein degradation via a hormone-inducible Arabidopsis F-box protein, transport inhibitor response 1 (TIR1). In the presence of auxin, TIR1 serves as a substrate-recognition component of the E3 ubiquitin ligase complex SKP1-CUL1-F-box (SCF), ubiquitinating auxin-inducible degron (AID)-tagged proteins for proteasomal degradation. Here, we optimize the Caenorhabditis elegans AID system by utilizing 1-naphthaleneacetic acid (NAA), an indole-free synthetic analog of the natural auxin indole-3-acetic acid (IAA). We take advantage of the photostability of NAA to demonstrate via quantitative high-resolution microscopy that rapid degradation of target proteins can be detected in single cells within 30 min of exposure. Additionally, we show that NAA works robustly in both standard growth media and physiological buffer. We also demonstrate that K-NAA, the water-soluble, potassium salt of NAA, can be combined with microfluidics for targeted protein degradation in C. elegans larvae. We provide insight into how the AID system functions in C. elegans by determining that TIR1 depends on C. elegansSKR-1/2, CUL-1, and RBX-1 to degrade target proteins. Finally, we present highly penetrant defects from NAA-mediated degradation of the FTZ-F1 nuclear hormone receptor, NHR-25, during C. elegans uterine-vulval development. Together, this work improves our use and understanding of the AID system for dissecting gene function at the single-cell level during C. elegans development.


2017 ◽  
Author(s):  
Junyue Cao ◽  
Jonathan S. Packer ◽  
Vijay Ramani ◽  
Darren A. Cusanovich ◽  
Chau Huynh ◽  
...  

AbstractConventional methods for profiling the molecular content of biological samples fail to resolve heterogeneity that is present at the level of single cells. In the past few years, single cell RNA sequencing has emerged as a powerful strategy for overcoming this challenge. However, its adoption has been limited by a paucity of methods that are at once simple to implement and cost effective to scale massively. Here, we describe a combinatorial indexing strategy to profile the transcriptomes of large numbers of single cells or single nuclei without requiring the physical isolation of each cell (Single cell Combinatorial Indexing RNA-seq or sci-RNA-seq). We show that sci-RNA-seq can be used to efficiently profile the transcriptomes of tens-of-thousands of single cells per experiment, and demonstrate that we can stratify cell types from these data. Key advantages of sci-RNA-seq over contemporary alternatives such as droplet-based single cell RNA-seq include sublinear cost scaling, a reliance on widely available reagents and equipment, the ability to concurrently process many samples within a single workflow, compatibility with methanol fixation of cells, cell capture based on DNA content rather than cell size, and the flexibility to profile either cells or nuclei. As a demonstration of sci-RNA-seq, we profile the transcriptomes of 42,035 single cells from C. elegans at the L2 stage, effectively 50-fold “shotgun cellular coverage” of the somatic cell composition of this organism at this stage. We identify 27 distinct cell types, including rare cell types such as the two distal tip cells of the developing gonad, estimate consensus expression profiles and define cell-type specific and selective genes. Given that C. elegans is the only organism with a fully mapped cellular lineage, these data represent a rich resource for future methods aimed at defining cell types and states. They will advance our understanding of developmental biology, and constitute a major step towards a comprehensive, single-cell molecular atlas of a whole animal.


2016 ◽  
Author(s):  
Matthias Kaiser ◽  
Florian Jug ◽  
Olin Silander ◽  
Siddharth Deshpande ◽  
Thomas Pfohl ◽  
...  

AbstractBacteria adapt to changes in their environment by regulating gene expression, often at the level of transcription. However, since the molecular processes underlying gene regulation are subject to thermodynamic and other stochastic fluctuations, gene expression is inherently noisy, and identical cells in a homogeneous environment can display highly heterogeneous expression levels. To study how stochasticity affects gene regulation at the single-cell level, it is crucial to be able to directly follow gene expression dynamics in single cells under changing environmental conditions. Recently developed microfluidic devices, used in combination with quantitative fluorescence time-lapse microscopy, represent a highly promising experimental approach, allowing tracking of lineages of single cells over long time-scales while simultaneously measuring their growth and gene expression. However, current devices do not allow controlled dynamical changes to the environmental conditions which are needed to study gene regulation. In addition, automated analysis of the imaging data from such devices is still highly challenging and no standard software is currently available. To address these challenges, we here present an integrated experimental and computational setup featuring, on the one hand, a new dual-input microfluidic chip which allows mixing and switching between two growth media and, on the other hand, a novel image analysis software which jointly optimizes segmentation and tracking of the cells and allows interactive user-guided fine-tuning of its results. To demonstrate the power of our approach, we study the lac operon regulation in E. coli cells grown in an environment that switches between glucose and lactose, and quantify stochastic lag times and memory at the single cell level.


2020 ◽  
Author(s):  
Ashwin Narayan ◽  
Bonnie Berger ◽  
Hyunghoon Cho

Nonlinear data-visualization methods, such as t-SNE and UMAP, have become staple tools for summarizing the complex transcriptomic landscape of single cells in 2D or 3D. However, existing approaches neglect the local density of data points in the original space, often resulting in misleading visualizations where densely populated subpopulations of cells are given more visual space even if they account for only a small fraction of transcriptional diversity within the dataset. We present den-SNE and densMAP, our density-preserving visualization tools based on t-SNE and UMAP, respectively, and demonstrate their ability to facilitate more accurate visual interpretation of single-cell RNA-seq data. On recently published datasets, our methods newly reveal significant changes in transcriptomic variability within a range of biological processes, including cancer, immune cell specialization in human, and the developmental trajectory of C. elegans. Our methods are readily applicable to visualizing high-dimensional data in other scientific domains.


Author(s):  
Gunnar Zimmermann ◽  
Richard Chapman

Abstract Dual beam FIBSEM systems invite the use of innovative techniques to localize IC fails both electrically and physically. For electrical localization, we present a quick and reliable in-situ FIBSEM technique to deposit probe pads with very low parasitic leakage (Ipara < 4E-11A at 3V). The probe pads were Pt, deposited with ion beam assistance, on top of highly insulating SiOx, deposited with electron beam assistance. The buried plate (n-Band), p-well, wordline and bitline of a failing and a good 0.2 μm technology DRAM single cell were contacted. Both cells shared the same wordline for direct comparison of cell characteristics. Through this technique we electrically isolated the fail to a single cell by detecting leakage between the polysilicon wordline gate and the cell diffusion. For physical localization, we present a completely in-situ FIBSEM technique that combines ion milling, XeF2 staining and SEM imaging. With this technique, the electrically isolated fail was found to be a hole in the gate oxide at the bad cell.


2021 ◽  
Vol 12 (11) ◽  
pp. 4111-4118
Author(s):  
Qi Zhang ◽  
Yunlong Shao ◽  
Boye Li ◽  
Yuanyuan Wu ◽  
Jingying Dong ◽  
...  

We achieved the low-damage spatial puncture of single cells at specific visual points with an accuracy of <65 nm.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Bhupinder Pal ◽  
Yunshun Chen ◽  
Michael J. G. Milevskiy ◽  
François Vaillant ◽  
Lexie Prokopuk ◽  
...  

Abstract Background Heterogeneity within the mouse mammary epithelium and potential lineage relationships have been recently explored by single-cell RNA profiling. To further understand how cellular diversity changes during mammary ontogeny, we profiled single cells from nine different developmental stages spanning late embryogenesis, early postnatal, prepuberty, adult, mid-pregnancy, late-pregnancy, and post-involution, as well as the transcriptomes of micro-dissected terminal end buds (TEBs) and subtending ducts during puberty. Methods The single cell transcriptomes of 132,599 mammary epithelial cells from 9 different developmental stages were determined on the 10x Genomics Chromium platform, and integrative analyses were performed to compare specific time points. Results The mammary rudiment at E18.5 closely aligned with the basal lineage, while prepubertal epithelial cells exhibited lineage segregation but to a less differentiated state than their adult counterparts. Comparison of micro-dissected TEBs versus ducts showed that luminal cells within TEBs harbored intermediate expression profiles. Ductal basal cells exhibited increased chromatin accessibility of luminal genes compared to their TEB counterparts suggesting that lineage-specific chromatin is established within the subtending ducts during puberty. An integrative analysis of five stages spanning the pregnancy cycle revealed distinct stage-specific profiles and the presence of cycling basal, mixed-lineage, and 'late' alveolar intermediates in pregnancy. Moreover, a number of intermediates were uncovered along the basal-luminal progenitor cell axis, suggesting a continuum of alveolar-restricted progenitor states. Conclusions This extended single cell transcriptome atlas of mouse mammary epithelial cells provides the most complete coverage for mammary epithelial cells during morphogenesis to date. Together with chromatin accessibility analysis of TEB structures, it represents a valuable framework for understanding developmental decisions within the mouse mammary gland.


2021 ◽  
Vol 7 (8) ◽  
pp. eabe3610
Author(s):  
Conor J. Kearney ◽  
Stephin J. Vervoort ◽  
Kelly M. Ramsbottom ◽  
Izabela Todorovski ◽  
Emily J. Lelliott ◽  
...  

Multimodal single-cell RNA sequencing enables the precise mapping of transcriptional and phenotypic features of cellular differentiation states but does not allow for simultaneous integration of critical posttranslational modification data. Here, we describe SUrface-protein Glycan And RNA-seq (SUGAR-seq), a method that enables detection and analysis of N-linked glycosylation, extracellular epitopes, and the transcriptome at the single-cell level. Integrated SUGAR-seq and glycoproteome analysis identified tumor-infiltrating T cells with unique surface glycan properties that report their epigenetic and functional state.


Sign in / Sign up

Export Citation Format

Share Document