In-Situ Dual Beam (FIBSEM) Techniques for Probe Pad Deposition and Dielectric Integrity Inspection in 0.2 μm Technology DRAM Single Cells

Author(s):  
Gunnar Zimmermann ◽  
Richard Chapman

Abstract Dual beam FIBSEM systems invite the use of innovative techniques to localize IC fails both electrically and physically. For electrical localization, we present a quick and reliable in-situ FIBSEM technique to deposit probe pads with very low parasitic leakage (Ipara < 4E-11A at 3V). The probe pads were Pt, deposited with ion beam assistance, on top of highly insulating SiOx, deposited with electron beam assistance. The buried plate (n-Band), p-well, wordline and bitline of a failing and a good 0.2 μm technology DRAM single cell were contacted. Both cells shared the same wordline for direct comparison of cell characteristics. Through this technique we electrically isolated the fail to a single cell by detecting leakage between the polysilicon wordline gate and the cell diffusion. For physical localization, we present a completely in-situ FIBSEM technique that combines ion milling, XeF2 staining and SEM imaging. With this technique, the electrically isolated fail was found to be a hole in the gate oxide at the bad cell.

2021 ◽  
Author(s):  
Nadav Scher ◽  
Katya Rechav ◽  
Perrine Paul-Gilloteaux ◽  
Ori Avinoam

Imaging of cells and tissues has improved significantly over the last decade. Dual-beam instruments with a focused ion beam mounted on a scanning electron microscope (FIB-SEM), which offer high-resolution 3D imaging of large volumes and fields-of-view are becoming widely used in the life sciences. FIB-SEM has most recently been implemented on fully hydrated, cryo-immobilized, biological samples. However, correlative light and electron microscopy (CLEM) workflows combining cryo- fluorescence microscopy (cryo-FM) and FIB-SEM are not yet commonly available. Here, we demonstrate that fluorescently labeled lipid droplets can serve as in-situ fiducial markers for correlating cryo- FM and FIB-SEM datasets, and that this approach can be used to target the acquisition of large FIB-SEM stacks spanning tens of microns under cryogenic conditions. We also show that cryo-FIB-SEM imaging is particularly informative for questions related to organelle structure and inter-organellar contacts, nuclear organization and mineral deposits in cells.


2003 ◽  
Vol 782 ◽  
Author(s):  
Wentao Qin ◽  
Alex Volinsky ◽  
Larry Rice ◽  
Lorraine Johnston ◽  
David Theodore

ABSTRACTMany microelectronic chips contain embedded memory arrays. A single SRAM bit-cell contains several transistors. Failure of any of the transistors makes the entire bit-cell inoperable. Dual-beam Focused Ion Beam (FIB) combines the slicing capability of FIB with in-situ SEM imaging. The combination offers unparalleled precision in looking for root causes of failures in microelectronic devices. Once a failure site is located, an FIB lift-off method can be used to prepare a TEM sample containing the area of interest. Further structural, elemental information can then be acquired from the failure site. We report here analyses of single and multiple bit failures in SRAM arrays carried out using FIB/SEM, and in two cases TEM imaging and EDS/PEELS. Root causes of bit failures including remnant seed-layer metal between stacked vias have been identified.


Author(s):  
Dudley M. Sherman ◽  
Thos. E. Hutchinson

The in situ electron microscope technique has been shown to be a powerful method for investigating the nucleation and growth of thin films formed by vacuum vapor deposition. The nucleation and early stages of growth of metal deposits formed by ion beam sputter-deposition are now being studied by the in situ technique.A duoplasmatron ion source and lens assembly has been attached to one side of the universal chamber of an RCA EMU-4 microscope and a sputtering target inserted into the chamber from the opposite side. The material to be deposited, in disc form, is bonded to the end of an electrically isolated copper rod that has provisions for target water cooling. The ion beam is normal to the microscope electron beam and the target is placed adjacent to the electron beam above the specimen hot stage, as shown in Figure 1.


Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1635
Author(s):  
Ya Su ◽  
Rongxin Fu ◽  
Wenli Du ◽  
Han Yang ◽  
Li Ma ◽  
...  

Quantitative measurement of single cells can provide in-depth information about cell morphology and metabolism. However, current live-cell imaging techniques have a lack of quantitative detection ability. Herein, we proposed a label-free and quantitative multichannel wide-field interferometric imaging (MWII) technique with femtogram dry mass sensitivity to monitor single-cell metabolism long-term in situ culture. We demonstrated that MWII could reveal the intrinsic status of cells despite fluctuating culture conditions with 3.48 nm optical path difference sensitivity, 0.97 fg dry mass sensitivity and 2.4% average maximum relative change (maximum change/average) in dry mass. Utilizing the MWII system, different intrinsic cell growth characteristics of dry mass between HeLa cells and Human Cervical Epithelial Cells (HCerEpiC) were studied. The dry mass of HeLa cells consistently increased before the M phase, whereas that of HCerEpiC increased and then decreased. The maximum growth rate of HeLa cells was 11.7% higher than that of HCerEpiC. Furthermore, HeLa cells were treated with Gemcitabine to reveal the relationship between single-cell heterogeneity and chemotherapeutic efficacy. The results show that cells with higher nuclear dry mass and nuclear density standard deviations were more likely to survive the chemotherapy. In conclusion, MWII was presented as a technique for single-cell dry mass quantitative measurement, which had significant potential applications for cell growth dynamics research, cell subtype analysis, cell health characterization, medication guidance and adjuvant drug development.


2006 ◽  
Vol 983 ◽  
Author(s):  
Todd Simpson ◽  
Ian V Mitchell

AbstractAperture arrays were fabricated in 1.0µm thick gold films supported on 20nm thick silicon nitride membranes. Lithographic milling strategies in gold were evaluated through the use of in-situ sectioning and high resolution SEM imaging with the UWO CrossBeam FIB/SEM. A successful strategy for producing a 250nm diameter hole with sidewalls approaching vertical is summarized.


Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 588
Author(s):  
Chaorong Zhong ◽  
Ruijuan Qi ◽  
Yonghui Zheng ◽  
Yan Cheng ◽  
Wenxiong Song ◽  
...  

Depositing platinum (Pt) interconnectors during the sample preparation process via a focused ion beam (FIB) system is an inescapable procedure for in situ transmission electron microscopy (TEM) investigations. To achieve good electrical contact and avoid irreversible damage in practical samples, the microscopic evolution mechanism of FIB-deposited Pt interconnectors need a more comprehensive understanding, though it is known that its resistivity could be affected by thermal annealing. In this work, an electron-beam FIB-deposited Pt interconnector was studied by advanced spherical aberration (Cs)-corrected TEM combined with an in situ heating and biasing system to clarify the relationship of microscopic evolution to resistivity variation. During the heating process, the Pt interconnector underwent crystallization, organic matter decomposition, Pt nanocrystal growth, grain connection, and conductive path formation, which are combined actions to cause several orders of magnitude of resistivity reduction. The comprehensive understanding of the microscopic evolution of FIB-deposited Pt material is beneficial, not only for optimizing the resistance performance of Pt as an interconnector, but also for understanding the role of C impurities with metal materials. For the purpose of wiring, annealed electron-beam (EB)-deposited Pt material can be recommended for use as an interconnector in devices for research purposes.


2016 ◽  
Vol 23 (2) ◽  
pp. 321-328 ◽  
Author(s):  
David R. Diercks ◽  
Brian P. Gorman ◽  
Johannes J. L. Mulders

AbstractSix precursors were evaluated for use as in situ electron beam-induced deposition capping layers in the preparation of atom probe tomography specimens with a focus on near-surface features where some of the deposition is retained at the specimen apex. Specimens were prepared by deposition of each precursor onto silicon posts and shaped into sub-70-nm radii needles using a focused ion beam. The utility of the depositions was assessed using several criteria including composition and uniformity, evaporation behavior and evaporation fields, and depth of Ga+ ion penetration. Atom probe analyses through depositions of methyl cyclopentadienyl platinum trimethyl, palladium hexafluoroacetylacetonate, and dimethyl-gold-acetylacetonate [Me2Au(acac)] were all found to result in tip fracture at voltages exceeding 3 kV. Examination of the deposition using Me2Au(acac) plus flowing O2 was inconclusive due to evaporation of surface silicon from below the deposition under all analysis conditions. Dicobalt octacarbonyl [Co2(CO)8] and diiron nonacarbonyl [Fe2(CO)9] depositions were found to be effective as in situ capping materials for the silicon specimens. Their very different evaporation fields [36 V/nm for Co2(CO)8 and 21 V/nm for Fe2(CO)9] provide options for achieving reasonably close matching of the evaporation field between the capping material and many materials of interest.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4131
Author(s):  
Natalia Becerra ◽  
Barbara Salis ◽  
Mariateresa Tedesco ◽  
Susana Moreno Flores ◽  
Pasquale Vena ◽  
...  

We have developed a novel experimental set-up that simultaneously, (i) applies static and dynamic deformations to adherent cells in culture, (ii) allows the visualization of cells under fluorescence microscopy, and (iii) allows atomic force microscopy nanoindentation measurements of the mechanical properties of the cells. The cell stretcher device relies on a dielectric elastomer film that can be electro-actuated and acts as the cell culture substrate. The shape and position of the electrodes actuating the film can be controlled by design in order to obtain specific deformations across the cell culture chamber. By using optical markers we characterized the strain fields under different electrode configurations and applied potentials. The combined setup, which includes the cell stretcher device, an atomic force microscope, and an inverted optical microscope, can assess in situ and with sub-micron spatial resolution single cell topography and elasticity, as well as ion fluxes, during the application of static deformations. Proof of performance on fibroblasts shows a reproducible increase in the average cell elastic modulus as a response to applied uniaxial stretch of just 4%. Additionally, high resolution topography and elasticity maps on a single fibroblast can be acquired while the cell is deformed, providing evidence of long-term instrumental stability. This study provides a proof-of-concept of a novel platform that allows in situ and real time investigation of single cell mechano-transduction phenomena with sub-cellular spatial resolution.


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
J. M. De Teresa ◽  
R. Córdoba ◽  
A. Fernández-Pacheco ◽  
O. Montero ◽  
P. Strichovanec ◽  
...  

We study the origin of the strong difference in the resistivity of focused-electron- and focused-Ga-ion-beam-induced deposition (FEBID and FIBID, resp.) of Pt performed in a dual beam equipment using(CH3)3Pt(CpCH3)as the precursor gas. We have performed in-situ and ex-situ resistance measurements in both types of nanodeposits, finding that the resistivity of Pt by FEBID is typically four orders of magnitude higher than Pt by FIBID. In the case of Pt by FEBID, the current-versus-voltage dependence is nonlinear and the resistance-versus-temperature behavior is strongly semiconducting, whereas Pt by FIBID shows linear current-versus-voltage dependence and only slight temperature dependence. The microstructure, as investigated by high-resolution transmission electron microscopy, consists in all cases of Pt single crystals with size about 3 nm embedded in an amorphous carbonaceous matrix. Due to the semiconducting character of the carbon matrix, which is the main component of the deposit, we propose that the transport results can be mapped onto those obtained in semiconducting materials with different degrees of doping. The different transport properties of Pt by FEBID and FIBID are attributed to the higher doping level in the case of FIBID, as given by composition measurements obtained with energy-dispersive X-ray microanalysis.


Sign in / Sign up

Export Citation Format

Share Document