scholarly journals Genetic variation for root architectural traits in response to phosphorus deficiency in mungbean at the seedling stage

2019 ◽  
Author(s):  
Venkata Ravi Prakash Reddy ◽  
M. Aski ◽  
G.P. Mishra ◽  
H.K. Dikshit ◽  
Akanksha Singh ◽  
...  

AbstractRoots enable the plant to survive in natural environment by providing anchorage and acquisition of water and nutrients. In this study, 153 mungbean genotypes were studied to compare root architectural traits under normal and low phosphorus conditions. Significant variations, medium to high heritability, near normal distribution and significant correlations were observed for studied root traits. Total root length (TRL) was positively correlated with total surface area (TSA), total root volume (TRV), total root tips (TRT) and root forks. The first two principal components explained the 79.19 % and 78.84% of the total variation under normal and low phosphorus conditions. TRL, TSA and TRV were major contributors of variation and can be utilized for screening of phosphorus uptake efficiency at seedling stage. Released Indian mungbean varieties were found to be superior for root traits than other genotypic groups. Based on comprehensive phosphorus efficiency measurement, IPM-288, TM 96-25, TM 96-2, M 1477, PUSA 1342 were found to be best five highly efficient genotypes whereas M 1131, PS-16, Pusa Vishal, M 831, IC 325828 were highly inefficient genotypes. These identified highly efficient lines are valuable genetic resources for phosphorus uptake efficiency that could be used in mungbean breeding programme.

Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 637 ◽  
Author(s):  
Leandro Pereira-Dias ◽  
Daniel Gil-Villar ◽  
Vincente Castell-Zeising ◽  
Ana Quiñones ◽  
Ángeles Calatayud ◽  
...  

Agriculture will face many challenges regarding food security and sustainability. Improving phosphorus use efficiency is of paramount importance to face the needs of a growing population while decreasing the toll on the environment. Pepper (Capsicum spp.) is widely cultivated around the world; hence, any breakthrough in this field would have a major impact in agricultural systems. Herein, the response to phosphorus low-input conditions is reported for 25 pepper accessions regarding phosphorus use efficiency, biomass and root traits. Results suggest a differential response from different plant organs to phosphorus starvation. Roots presented the lowest phosphorus levels, possibly due to mobilizations towards above-ground organs. Accessions showed a wide range of variability regarding efficiency parameters, offering the possibility of selecting materials for different inputs. Accessions bol_144 and fra_DLL showed an interesting phosphorus efficiency ratio under low-input conditions, whereas mex_scm and sp_piq showed high phosphorus uptake efficiency and mex_pas and sp_bola the highest values for phosphorus use efficiency. Phosphorus low-input conditions favored root instead of aerial growth, enabling increases of root total length, proportion of root length dedicated to fine roots and root specific length while decreasing roots’ average diameter. Positive correlation was found between fine roots and phosphorus efficiency parameters, reinforcing the importance of this adaptation to biomass yield under low-input conditions. This work provides relevant first insights into pepper’s response to phosphorus low-input conditions.


2015 ◽  
Vol 98 ◽  
pp. 171
Author(s):  
D. Basic ◽  
A.M. Muasya ◽  
S.B.M. Chimphango

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0255840
Author(s):  
Palaparthi Dharmateja ◽  
Manjeet Kumar ◽  
Rakesh Pandey ◽  
Pranab Kumar Mandal ◽  
Prashanth Babu ◽  
...  

The root system architectures (RSAs) largely decide the phosphorus use efficiency (PUE) of plants by influencing the phosphorus uptake. Very limited information is available on wheat’s RSAs and their deciding factors affecting phosphorus uptake efficiency (PupE) due to difficulties in adopting scoring values used for evaluating root traits. Based on our earlier research experience on nitrogen uptake efficiency screening under, hydroponics and soil-filled pot conditions, a comprehensive study on 182 Indian bread wheat genotypes was carried out under hydroponics with limited P (LP) and non-limiting P (NLP) conditions. The findings revealed a significant genetic variation, root traits correlation, and moderate to high heritability for RSAs traits namely primary root length (PRL), total root length (TRL), total root surface area (TSA), root average diameter (RAD), total root volume (TRV), total root tips (TRT) and total root forks (TRF). In LP, the expressions of TRL, TRV, TSA, TRT and TRF were enhanced while PRL and RAD were diminished. An almost similar pattern of correlations among the RSAs was also observed in both conditions except for RAD. RAD exhibited significant negative correlations with PRL, TRL, TSA, TRT and TRF under LP (r = -0.45, r = -0.35, r = -0.16, r = -0.30, and r = -0.28 respectively). The subclass of TRL, TSA, TRV and TRT representing the 0–0.5 mm diameter had a higher root distribution percentage in LP than NLP. Comparatively wide range of H’ value i.e. 0.43 to 0.97 in LP than NLP indicates that expression pattern of these traits are highly influenced by the level of P. In which, RAD (0.43) expression was reduced in LP, and expressions of TRF (0.91) and TSA (0.97) were significantly enhanced. The principal component analysis for grouping of traits and genotypes over LP and NLP revealed a high PC1 score indicating the presence of non-crossover interactions. Based on the comprehensive P response index value (CPRI value), the top five highly P efficient wheat genotypes namely BW 181, BW 103, BW 104, BW 143 and BW 66, were identified. Considering the future need for developing resource-efficient wheat varieties, these genotypes would serve as valuable genetic sources for improving P efficiency in wheat cultivars. This set of genotypes would also help in understanding the genetic architecture of a complex trait like P use efficiency.


2021 ◽  
Vol 12 ◽  
Author(s):  
Amira Beroueg ◽  
François Lecompte ◽  
Alain Mollier ◽  
Loïc Pagès

Low phosphorus (P) bioavailability in the soil and concerns over global P reserves have emphasized the need to cultivate plants that acquire and use P efficiently. Root architecture adaptation to low P can be variable depending on species or even genotypes. To assess the genetic variability of root architectural traits and their responses to low P in the Lactuca genus, we examined fourteen genotypes including wild species, ancient and commercial lettuce cultivars at low (LP, 0.1 mmol. L–1) and high P (HP, 1 mmol. L–1). Plants were grown in cylindrical pots adapted for the excavation and observation of root systems, with an inert substrate. We identified substantial genetic variation in all the investigated root traits, as well as an effect of P availability on these traits, except on the diameter of thinner roots. At low P, the main responses were a decrease in taproot diameter, an increase in taproot dominance over its laterals and an increase in the inter-branch distance. Although the genotype x P treatment effect was limited to root depth, we identified a tradeoff between the capacity to maintain a thick taproot at low P and the dominance of the taproot over its laterals. Regardless of the P level, the phosphorus-use-efficiency (PUE) varied among lettuce genotypes and was significantly correlated with total root biomass regardless of the P level. As taproot depth and maximum apical diameter were the principal determinants of total root biomass, the relative increase in PUE at low P was observed in genotypes that showed the thickest apical diameters and/or those whose maximal apical diameter was not severely decreased at low P availability. This pre-eminence of the taproot in the adaptation of Lactuca genotypes to low P contrasts with other species which rely more on lateral roots to adapt to P stress.


Genome ◽  
2018 ◽  
Vol 61 (3) ◽  
pp. 209-215 ◽  
Author(s):  
Xilan Yang ◽  
Yaxi Liu ◽  
Fangkun Wu ◽  
Xiaojun Jiang ◽  
Yu Lin ◽  
...  

Deficiency of available phosphorus (P) in soil limits wheat production and creates a need to develop P-deficiency-tolerant cultivars. Plant roots, important organs for absorbing nutrients and synthesizing growth regulators, are good candidates for P-efficiency screening. In this study, we evaluated five root traits under hydroponic culture conditions either with (AP) or without (NP) applied P in a recombinant inbred line population (H461/CM107) of Triticum aestivum L. at the seedling stage. Four significant quantitative trait loci (QTL) were detected, on chromosomes 1D, 2D, 3D, and 7D in NP-treated plants, explaining up to 13.0%, 11.0%, 14.4%, and 12.8% of the phenotypic variance, respectively. Among these QTL, Qrt.sicau-3D and Qrt.sicau-7D showed pleiotropic and additive effects. All QTL were found to be novel. The diversity array technology markers flanking the QTL were converted to simple sequence repeat markers that can be deployed in future genetic studies of P deficiency. These QTL lead to an increase in root biomass and respond to P-deficiency stress; these characteristics are crucial to improve root traits for breeding or further investigation of the gene(s) involved in P-deficiency tolerance.


PLoS ONE ◽  
2020 ◽  
Vol 15 (6) ◽  
pp. e0221008 ◽  
Author(s):  
Venkata Ravi Prakash Reddy ◽  
Muraleedhar S. Aski ◽  
Gyan Prakash Mishra ◽  
Harsh Kumar Dikshit ◽  
Akanksha Singh ◽  
...  

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7006 ◽  
Author(s):  
Jiayu Li ◽  
Shunxian Lin ◽  
Qingxu Zhang ◽  
Qi Zhang ◽  
Wenwen Hu ◽  
...  

Background Allelopathic rice releases allelochemicals through its root systems, thereby exerting a negative effect on paddy weeds. This research aimed to evaluate the relationship between fine-root traits and the rice allelopathic potential at the seedling stage. Methods Two allelopathic rice cultivars, ‘PI312777’ and ‘Taichung Native1,’ and one non-allelopathic rice cultivar, ‘Lemont,’ were grown to the 3–6 leaf stage in a hydroponic system. Their fine roots were collected for morphological trait (root length, root surface area, root volume, and root tips number) in smaller diameter cutoffs and proliferative trait (root biomass) analysis. Their root-exudates were used for quantitative analysis of phenolic acids contents and an evaluation of allelopathic potential. Correlation analysis was also used to assess whether any linear relationships existed. Results Our results showed that allelopathic rice cultivars had significantly higher fine-root length having diameters <0.2 mm, more root tips number, and greater root biomass, coupled with higher allelopathic potential and phenolic acid contents of their root exudates, comparing with non-allelopathic rice cultivar. These fine-root traits were significantly-positively correlated to allelopathic inhibition and total phenolic contents in rice root-exudates. However, there were not significant correlations among the rice allelopathic potential and total phenolic acid contents of rice root-exudates with the root length, root surface area, and root volume of fine root in diameter >0.2 mm. Discussion Our results implied that fine-root traits appears to be important in understanding rice allelopathy at the seedling stage. The high allelopathic potential of rice cultivars might be attributed to their higher length of fine roots <0.2 mm in diameter and more number of root tips of fine root, which could accumulate and release more allelochemicals to solutions, thereby resulting in high inhibition on target plants. The mechanisms regulating this process need to be further studied.


2019 ◽  
Vol 45 (4) ◽  
pp. 601
Author(s):  
Yi-Chuan YUAN ◽  
Xiao-Yu CHEN ◽  
Ming-Ming LI ◽  
Ping LI ◽  
Ya-Tao JIA ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1149
Author(s):  
Guglielmo Puccio ◽  
Rosolino Ingraffia ◽  
Dario Giambalvo ◽  
Gaetano Amato ◽  
Alfonso S. Frenda

Identifying genotypes with a greater ability to absorb nitrogen (N) may be important to reducing N loss in the environment and improving the sustainability of agricultural systems. This study extends the knowledge of variability among wheat genotypes in terms of morphological or physiological root traits, N uptake under conditions of low soil N availability, and in the amount and rapidity of the use of N supplied with fertilizer. Nine genotypes of durum wheat were chosen for their different morpho-phenological characteristics and year of their release. The isotopic tracer 15N was used to measure the fertilizer N uptake efficiency. The results show that durum wheat breeding did not have univocal effects on the characteristics of the root system (weight, length, specific root length, etc.) or N uptake capacity. The differences in N uptake among the studied genotypes when grown in conditions of low N availability appear to be related more to differences in uptake efficiency per unit of weight and length of the root system than to differences in the morphological root traits. The differences among the genotypes in the speed and the ability to take advantage of the greater N availability, determined by N fertilization, appear to a certain extent to be related to the development of the root system and the photosynthesizing area. This study highlights some variability within the species in terms of the development, distribution, and efficiency of the root system, which suggests that there may be sufficient grounds for improving these traits with positive effects in terms of adaptability to difficult environments and resilience to climate change.


Sign in / Sign up

Export Citation Format

Share Document