scholarly journals Linking root traits to superior phosphorus uptake efficiency in Cape Fabales

2015 ◽  
Vol 98 ◽  
pp. 171
Author(s):  
D. Basic ◽  
A.M. Muasya ◽  
S.B.M. Chimphango
2019 ◽  
Author(s):  
Venkata Ravi Prakash Reddy ◽  
M. Aski ◽  
G.P. Mishra ◽  
H.K. Dikshit ◽  
Akanksha Singh ◽  
...  

AbstractRoots enable the plant to survive in natural environment by providing anchorage and acquisition of water and nutrients. In this study, 153 mungbean genotypes were studied to compare root architectural traits under normal and low phosphorus conditions. Significant variations, medium to high heritability, near normal distribution and significant correlations were observed for studied root traits. Total root length (TRL) was positively correlated with total surface area (TSA), total root volume (TRV), total root tips (TRT) and root forks. The first two principal components explained the 79.19 % and 78.84% of the total variation under normal and low phosphorus conditions. TRL, TSA and TRV were major contributors of variation and can be utilized for screening of phosphorus uptake efficiency at seedling stage. Released Indian mungbean varieties were found to be superior for root traits than other genotypic groups. Based on comprehensive phosphorus efficiency measurement, IPM-288, TM 96-25, TM 96-2, M 1477, PUSA 1342 were found to be best five highly efficient genotypes whereas M 1131, PS-16, Pusa Vishal, M 831, IC 325828 were highly inefficient genotypes. These identified highly efficient lines are valuable genetic resources for phosphorus uptake efficiency that could be used in mungbean breeding programme.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0255840
Author(s):  
Palaparthi Dharmateja ◽  
Manjeet Kumar ◽  
Rakesh Pandey ◽  
Pranab Kumar Mandal ◽  
Prashanth Babu ◽  
...  

The root system architectures (RSAs) largely decide the phosphorus use efficiency (PUE) of plants by influencing the phosphorus uptake. Very limited information is available on wheat’s RSAs and their deciding factors affecting phosphorus uptake efficiency (PupE) due to difficulties in adopting scoring values used for evaluating root traits. Based on our earlier research experience on nitrogen uptake efficiency screening under, hydroponics and soil-filled pot conditions, a comprehensive study on 182 Indian bread wheat genotypes was carried out under hydroponics with limited P (LP) and non-limiting P (NLP) conditions. The findings revealed a significant genetic variation, root traits correlation, and moderate to high heritability for RSAs traits namely primary root length (PRL), total root length (TRL), total root surface area (TSA), root average diameter (RAD), total root volume (TRV), total root tips (TRT) and total root forks (TRF). In LP, the expressions of TRL, TRV, TSA, TRT and TRF were enhanced while PRL and RAD were diminished. An almost similar pattern of correlations among the RSAs was also observed in both conditions except for RAD. RAD exhibited significant negative correlations with PRL, TRL, TSA, TRT and TRF under LP (r = -0.45, r = -0.35, r = -0.16, r = -0.30, and r = -0.28 respectively). The subclass of TRL, TSA, TRV and TRT representing the 0–0.5 mm diameter had a higher root distribution percentage in LP than NLP. Comparatively wide range of H’ value i.e. 0.43 to 0.97 in LP than NLP indicates that expression pattern of these traits are highly influenced by the level of P. In which, RAD (0.43) expression was reduced in LP, and expressions of TRF (0.91) and TSA (0.97) were significantly enhanced. The principal component analysis for grouping of traits and genotypes over LP and NLP revealed a high PC1 score indicating the presence of non-crossover interactions. Based on the comprehensive P response index value (CPRI value), the top five highly P efficient wheat genotypes namely BW 181, BW 103, BW 104, BW 143 and BW 66, were identified. Considering the future need for developing resource-efficient wheat varieties, these genotypes would serve as valuable genetic sources for improving P efficiency in wheat cultivars. This set of genotypes would also help in understanding the genetic architecture of a complex trait like P use efficiency.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1149
Author(s):  
Guglielmo Puccio ◽  
Rosolino Ingraffia ◽  
Dario Giambalvo ◽  
Gaetano Amato ◽  
Alfonso S. Frenda

Identifying genotypes with a greater ability to absorb nitrogen (N) may be important to reducing N loss in the environment and improving the sustainability of agricultural systems. This study extends the knowledge of variability among wheat genotypes in terms of morphological or physiological root traits, N uptake under conditions of low soil N availability, and in the amount and rapidity of the use of N supplied with fertilizer. Nine genotypes of durum wheat were chosen for their different morpho-phenological characteristics and year of their release. The isotopic tracer 15N was used to measure the fertilizer N uptake efficiency. The results show that durum wheat breeding did not have univocal effects on the characteristics of the root system (weight, length, specific root length, etc.) or N uptake capacity. The differences in N uptake among the studied genotypes when grown in conditions of low N availability appear to be related more to differences in uptake efficiency per unit of weight and length of the root system than to differences in the morphological root traits. The differences among the genotypes in the speed and the ability to take advantage of the greater N availability, determined by N fertilization, appear to a certain extent to be related to the development of the root system and the photosynthesizing area. This study highlights some variability within the species in terms of the development, distribution, and efficiency of the root system, which suggests that there may be sufficient grounds for improving these traits with positive effects in terms of adaptability to difficult environments and resilience to climate change.


Author(s):  
Ahmed M. Yossif ◽  
Sait Gezgin

Study was aimed to determine the effect of mono-ammonium phosphate (MAP, NH4H2PO4) and K-Humate application on grain yield and grain phosphorus uptake efficiency which applied on Central Anatolian calcareous and basic reaction soil. The research was conducted at Bahri Dağdaş Agricultural Research Institute field in dry conditions during 2018 - 19 to determine the effect of phosphorus doses @ 0, 17.5 and 35.0 kg ha-1 and K-Humate @ 0 and 12 kg ha-1 on Bayraktar 2000 variety of bread wheat crop grain yield, agronomic (AE), physiological (PE) and apparent recovery (AR) phosphorus uptake efficiency. Results of the research revealed that increased phosphorus rate, enhances grain yield and amount of grain phosphorus uptake increase, while the grain AE, PE and AR were decreasing significantly. Additionally, with the K-Humate application with respect to control, the grain yield was positively affected in P0 and P17.5, while the grain phosphorus uptake amount was increased by 13%, in the P35 application the grain yield and the grain phosphorus uptake amount decreased by 9% and 5% respectively. In another direction, with the K-Humate application depending on control, in P17.5 application grain AE and AR were increased by 13% and 12% respectively, while grain PE decreased by 54%. Besides, with the K-Humate application according to control and in the P35 application grain AE, PE and AR were decreased by 66%, 51% and 40% respectively.


2019 ◽  
Vol 49 (1) ◽  
Author(s):  
Maria Isidória Silva Gonzaga ◽  
Danyelle Chaves Figueiredo de Souza ◽  
André Quintão de Almeida ◽  
Cheryl Mackowiak ◽  
Idamar da Silva Lima ◽  
...  

ABSTRACT: Biochar has been used worldwide as an efficient soil amendment due to its beneficial interaction with soil particles and nutrients; however, studies on the effect of biochar on the availability of nutrients such as N and P in tropical soils are still missing. The objective of the study was to evaluate the effect of different types and doses of biochars on the concentration and uptake of N and P in Indian mustard plants (Brassica juncea L.) grown in a Cu contaminated soil during three successive growth cycles. The greenhouse experiment was set up as randomized block design in a 3x3 factorial scheme, with 3 types of biochars (coconut shell, orange bagasse and sewage sludge) and three rates of application (0, 30 and 60t ha-1), and 4 replicates. Biochar increased plant growth by approximately 30 to 224%; however, the orange bagasse biochar was the most effective. Biochar reduced plant N concentration in approximately 15-43%, regardless of the rate of application, indicating the need to carefully adjust N fertilization. In the last growth cycle, biochar from coconut shell and orange bagasse improved the N uptake efficiency suggesting a better amelioration effect with ageing in soil. Biochar did not affect P nutrition in Indian mustard to a great extent; however, it significantly decreased the N:P ratio in the plant.


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 637 ◽  
Author(s):  
Leandro Pereira-Dias ◽  
Daniel Gil-Villar ◽  
Vincente Castell-Zeising ◽  
Ana Quiñones ◽  
Ángeles Calatayud ◽  
...  

Agriculture will face many challenges regarding food security and sustainability. Improving phosphorus use efficiency is of paramount importance to face the needs of a growing population while decreasing the toll on the environment. Pepper (Capsicum spp.) is widely cultivated around the world; hence, any breakthrough in this field would have a major impact in agricultural systems. Herein, the response to phosphorus low-input conditions is reported for 25 pepper accessions regarding phosphorus use efficiency, biomass and root traits. Results suggest a differential response from different plant organs to phosphorus starvation. Roots presented the lowest phosphorus levels, possibly due to mobilizations towards above-ground organs. Accessions showed a wide range of variability regarding efficiency parameters, offering the possibility of selecting materials for different inputs. Accessions bol_144 and fra_DLL showed an interesting phosphorus efficiency ratio under low-input conditions, whereas mex_scm and sp_piq showed high phosphorus uptake efficiency and mex_pas and sp_bola the highest values for phosphorus use efficiency. Phosphorus low-input conditions favored root instead of aerial growth, enabling increases of root total length, proportion of root length dedicated to fine roots and root specific length while decreasing roots’ average diameter. Positive correlation was found between fine roots and phosphorus efficiency parameters, reinforcing the importance of this adaptation to biomass yield under low-input conditions. This work provides relevant first insights into pepper’s response to phosphorus low-input conditions.


Sign in / Sign up

Export Citation Format

Share Document