scholarly journals Human colon-on-a-chip enables continuous in vitro analysis of colon mucus layer accumulation and physiology

2019 ◽  
Author(s):  
Alexandra Sontheimer-Phelps ◽  
David B. Chou ◽  
Alessio Tovaglieri ◽  
Thomas C. Ferrante ◽  
Taylor Duckworth ◽  
...  

ABSTRACTBackground & AimsThe mucus layer in the human colon protects against commensal bacteria and pathogens, and defects in its unique bilayered structure contribute to intestinal disorders, such as ulcerative colitis. However, our understanding of colon physiology is limited by the lack of in vitro models that replicate human colonic mucus layer structure and function. Here, we investigated if combining organ-on-a-chip and organoid technologies can be leveraged to develop a human-relevant in vitro model of colon mucus physiology.MethodsA human colon-on-a-chip (Colon Chip) microfluidic device lined by primary patient-derived colonic epithelial cells was used to recapitulate mucus bilayer formation, and to visualize mucus accumulation in living cultures non-invasively.ResultsThe Colon Chip supports spontaneous goblet cell differentiation and accumulation of a mucus bilayer with impenetrable and penetrable layers, and a thickness similar to that observed in human colon, while maintaining a subpopulation of proliferative epithelial cells. Live imaging of the mucus layer formation on-chip revealed that stimulation of the colonic epithelium with prostaglandin E2, which is elevated during inflammation, causes rapid mucus volume expansion via an NKCC1 ion channel-dependent increase in its hydration state, but no increase in de novo mucus secretion.ConclusionThis study is the first to demonstrate production of colonic mucus with a physiologically relevant bilayer structure in vitro, which can be analyzed in real-time non-invasively. The Colon Chip may offer a new preclinical tool to analyze the role of mucus in human intestinal homeostasis as well as diseases, such as ulcerative colitis and cancer.

2020 ◽  
Vol 9 (3) ◽  
pp. 507-526 ◽  
Author(s):  
Alexandra Sontheimer-Phelps ◽  
David B. Chou ◽  
Alessio Tovaglieri ◽  
Thomas C. Ferrante ◽  
Taylor Duckworth ◽  
...  

2000 ◽  
Vol 113 (13) ◽  
pp. 2471-2483 ◽  
Author(s):  
I. Hofmann ◽  
C. Mertens ◽  
M. Brettel ◽  
V. Nimmrich ◽  
M. Schnolzer ◽  
...  

Plakophilin 1 and 2 (PKP1, PKP2) are members of the arm-repeat protein family. They are both constitutively expressed in most vertebrate cells, in two splice forms named a and b, and display a remarkable dual location: they occur in the nuclei of cells and, in epithelial cells, at the plasma membrane within the desmosomal plaques. We have shown by solid phase-binding assays that both PKP1a and PKP2a bind to intermediate filament (IF) proteins, in particular to cytokeratins (CKs) from epidermal as well as simple epithelial cells and, to some extent, to vimentin. In line with this we show that recombinant PKP1a binds strongly to IFs assembled in vitro from CKs 8/18, 5/14, vimentin or desmin and integrates them into thick (up to 120 nm in diameter) IF bundles extending for several microm. The basic amino-terminal, non-arm-repeat domain of PKP1a is necessary and sufficient for this specific interaction as shown by blot overlay and centrifugation experiments. In particular, the binding of PKP1a to IF proteins is saturable at an approximately equimolar ratio. In extracts from HaCaT cells, distinct soluble complexes containing PKP1a and desmoplakin I (DPI) have been identified by co-immunoprecipitation and sucrose density fractionation. The significance of these interactions of PKP1a with IF proteins on the one hand and desmoplakin on the other is discussed in relation to the fact that PKP1a is not bound - and does not bind - to extended IFs in vivo. We postulate that (1) effective cellular regulatory mechanisms exist that prevent plakophilins from unscheduled IF-binding, and (2) specific desmoplakin interactions with either PKP1, PKP2 or PKP3, or combinations thereof, are involved in the selective recruitment of plakophilins to the desmosomal plaques.


1997 ◽  
Vol 273 (1) ◽  
pp. G75-G82 ◽  
Author(s):  
S. Keates ◽  
A. C. Keates ◽  
E. Mizoguchi ◽  
A. Bhan ◽  
C. P. Kelly

Epithelial cell-derived neutrophil-activating protein-78 (ENA-78) is a neutrophil-directed C-X-C chemokine. We report that Caco-2 and T84 human intestinal epithelial cells produce ENA-78 after stimulation by interleukin (IL)-1 beta or tumor necrosis factor-alpha. Caco-2 cells show increased IL-8 production at 4-12 h and increased ENA-78 production at 8-24 h after cytokine stimulation. Immunohistochemical studies in normal human colon and in ulcerative colitis demonstrate ENA-78 immunoreactivity principally associated with crypt epithelial cells. Furthermore, human colonic tissues from patients with ulcerative colitis show elevated levels of ENA-78 mRNA (24-fold increase, P < 0.01) and protein (4-fold increase, P < 0.05) compared with normal controls. Thus ENA-78 is produced in normal colon and in ulcerative colitis and is predominantly of enterocyte origin. The kinetics of ENA-78 induction in human colon epithelial cell lines are delayed and prolonged compared with IL-8. We propose that ENA-78 and IL-8 serve complementary and sequential roles in neutrophil recruitment in ulcerative colitis. ENA-78 as an enterocyte-derived, neutrophil-activating chemokine may be especially important in neutrophil recruitment from the lamina propria into the epithelial layer.


2018 ◽  
Vol 12 (supplement_1) ◽  
pp. S091-S091
Author(s):  
S Hibiya ◽  
K Tsuchiya ◽  
S Watanabe ◽  
R Nishimura ◽  
T Shirasaki ◽  
...  

2020 ◽  
Vol 26 (6) ◽  
pp. 885-897 ◽  
Author(s):  
John Gubatan ◽  
Gillian A Mehigan ◽  
Fernando Villegas ◽  
Shuji Mitsuhashi ◽  
Maria Serena Longhi ◽  
...  

Abstract Background Vitamin D plays a protective role in ulcerative colitis (UC) patients through unclear mechanisms. Cathelicidin is an antimicrobial peptide induced by 1,25(OH)D2. Our goal was to evaluate the link between cathelicidin and vitamin D–associated clinical outcomes in UC patients, explore vitamin D induction of cathelicidin in human colon cells, and evaluate the effects of intrarectal human cathelicidin on a murine model of colitis. Methods Serum and colonic cathelicidin levels were measured in UC patients and correlated with clinical and histologic outcomes. Human colon cells were treated with 1,25(OH)2D and production of cathelicidin and cytokines were quantified. Antimicrobial activity against Escherichia coli from cell culture supernatants was measured. Mice were treated with intrarectal cathelicidin, and its effects on DSS colitis and intestinal microbiota were evaluated. Results In UC patients, serum 25(OH)D positively correlated with serum and colonic cathelicidin. Higher serum cathelicidin is associated with decreased risk of histologic inflammation and clinical relapse but not independent of 25(OH)D or baseline inflammation. The 1,25(OH)2D treatment of colon cells induced cathelicidin and IL-10, repressed TNF-α, and suppressed Escherichia coli growth. This antimicrobial effect was attenuated with siRNA-cathelicidin transfection. Intrarectal cathelicidin reduced the severity of DSS colitis but did not mitigate the impact of colitis on microbial composition. Conclusions Cathelicidin plays a protective role in 25(OH)D-associated UC histologic outcomes and murine colitis. Cathelicidin is induced by vitamin D in human colonic epithelial cells and promotes antimicrobial activity against E. coli. Our study provides insights into the vitamin D–cathelicidin pathway as a potential therapeutic target.


2009 ◽  
Vol 296 (6) ◽  
pp. L1012-L1018 ◽  
Author(s):  
Nagaraja Sethuraman Balakathiresan ◽  
Sharmistha Bhattacharyya ◽  
Usha Gutti ◽  
Robert P. Long ◽  
Catherine Jozwik ◽  
...  

Cystic fibrosis (CF) is due to mutations in the CFTR gene and is characterized by hypersecretion of the proinflammatory chemokine IL-8 into the airway lumen. Consequently, this induces the highly inflammatory cellular phenotype typical of CF. Our initial studies revealed that IL-8 mRNA is relatively stable in CF cells compared with those that had been repaired with [WT]CFTR (wild-type CFTR). Relevantly, the 3′-UTR of IL-8 mRNA contains AU-rich sequences (AREs) that have been shown to mediate posttranscriptional regulation of proinflammatory genes upon binding to ARE-binding proteins including Tristetraprolin (TTP). We therefore hypothesized that very low endogenous levels of TTP in CF cells might be responsible for the relative stability of IL-8 mRNA. As predicted, increased expression of TTP in CF cells resulted in reduced stability of IL-8 mRNA. An in vitro analysis of IL-8 mRNA stability in CF cells also revealed a TTP-induced enhancement of deadenylation causing reduction of IL-8 mRNA stability. We conclude that enhanced stability of IL-8 mRNA in TTP-deficient CF lung epithelial cells serve to drive the proinflammatory cellular phenotype in the CF lung.


2020 ◽  
Vol 8 (7) ◽  
pp. 1019
Author(s):  
Warner Alpízar-Alpízar ◽  
Mette E. Skindersoe ◽  
Lone Rasmussen ◽  
Mette C. Kriegbaum ◽  
Ib J. Christensen ◽  
...  

(1) Background: Persistent Helicobacter pylori infection is the most important risk factor for gastric cancer. The urokinase receptor (uPAR) is upregulated in lesions harboring cancer invasion and inflammation. Circumstantial evidence tends to correlate H. pylori colonization with increased uPAR expression in the human gastric epithelium, but a direct causative link has not yet been established in vivo; (2) Methods: In a mouse model of H. pylori-induced gastritis, we investigated the temporal emergence of uPAR protein expression in the gastric mucosa in response to H. pylori (SS1 strain) infection; (3) Results: We observed intense uPAR immunoreactivity in foveolar epithelial cells of the gastric corpus due to de novo synthesis, compared to non-infected animals. This uPAR induction represents a very early response, but it increases progressively over time as do infiltrating immune cells. Eradication of H. pylori infection by antimicrobial therapy causes a regression of uPAR expression to its physiological baseline levels. Suppression of the inflammatory response by prostaglandin E2 treatment attenuates uPAR expression. Notwithstanding this relationship, H. pylori does induce uPAR expression in vitro in co-cultures with gastric cancer cell lines; (4) Conclusions: We showed that persistent H. pylori colonization is a necessary event for the emergence of a relatively high uPAR protein expression in murine gastric epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document