scholarly journals Morning glory species co-occurrence is associated with asymmetrically decreased and cascading reproductive isolation

2019 ◽  
Author(s):  
Kate L Ostevik ◽  
Joanna L Rifkin ◽  
Hanhan Xia ◽  
Mark D Rausher

AbstractHybridization between species can affect the strength of the reproductive barriers that separate those species. Two extensions of this effect are: (1) the expectation that asymmetric hybridization will have asymmetric effects on reproductive barrier strength and (2) the expectation that local hybridization will affect only local reproductive barrier strength and could therefore alter within-species compatibility. We tested these hypotheses in a pair of morning glory species that exhibit asymmetric gene flow from highly selfing Ipomoea lacunosa into mixed mating I. cordatotriloba in regions where they co-occur. Because of the direction of this gene flow, we predicted that reproductive barrier strength would be more strongly affected in I. cordatotriloba than I. lacunosa. We also predicted that changes to reproductive barriers in sympatric I. cordatotriloba populations would affect compatibility with allopatric populations of that species. We tested these predictions by measuring the strength of a reproductive barrier to seed set across the species’ ranges. Consistent with our first prediction, we found that sympatric and allopatric I. lacunosa produce the same number of seeds in crosses with I. cordatotriloba, whereas crosses between sympatric I. cordatotriloba and I. lacunosa are more successful than crosses between allopatric I. cordatotriloba and I. lacunosa. This difference in compatibility appears to reflect an asymmetric decrease in the strength of the barrier to seed set in sympatric I. cordatotriloba, which could be caused by I. lacunosa alleles that have introgressed into I. cordatotriloba. We further demonstrated that changes to sympatric I. cordatotriloba have decreased its ability to produce seeds with allopatric populations of the same species, in line with our second prediction. Thus, in a manner analogous to cascade reinforcement, we suggest that introgression associated with hybridization not only influences between-species isolation but can also contribute to isolation within a species.Impact StatementBiological diversity depends on traits that prevent different species from successfully interbreeding. However, these reproductive barriers are often imperfect, leading to hybrid matings and possible genetic exchange between species where they occur together. When this happens, the reproductive barriers that separate species can themselves evolve to become stronger or weaker. Understanding the effects of hybridization on reproductive barriers is key to predicting the potential for future hybridization between species and ultimately whether hybridizing species will diverge, persist, or merge in regions where they co-occur. Here we hypothesize and show that hybridization in only one direction causes unidirectional changes to reproductive barrier strength and that geographically restricted hybridization causes local changes to barrier strength that can affect interbreeding within a species. Specifically, we found that gene flow from one species of morning glory into another likely caused a reproductive barrier to decrease in regions where they co-occur. The decreased reproductive barrier is caused by changes in only the species that received gene flow. We also found that the locally reduced barriers in the species that received gene flow affected reproductive compatibility between populations within that species. Thus, a breakdown of barriers between species can cause a build-up of barriers within a species. Our work demonstrates critical and rarely explored interactions at species boundaries.

2022 ◽  
Vol 289 (1966) ◽  
Author(s):  
Benjamin G. Freeman ◽  
Jonathan Rolland ◽  
Graham A. Montgomery ◽  
Dolph Schluter

Why are speciation rates so variable across the tree of life? One hypothesis is that this variation is explained by how rapidly reproductive barriers evolve. We tested this hypothesis by conducting a comparative study of the evolution of bird song, a premating barrier to reproduction. Speciation in birds is typically initiated when geographically isolated (allopatric) populations evolve reproductive barriers. We measured the strength of song as a premating barrier between closely related allopatric populations by conducting 2339 field experiments to measure song discrimination for 175 taxon pairs of allopatric or parapatric New World passerine birds, and estimated recent speciation rates from molecular phylogenies. We found evidence that song discrimination is indeed an important reproductive barrier: taxon pairs with high song discrimination in allopatry did not regularly interbreed in parapatry. However, evolutionary rates of song discrimination were not associated with recent speciation rates. Evolutionary rates of song discrimination were also unrelated to latitude or elevation, but species with innate song (suboscines) evolved song discrimination much faster than species with learned song (oscines). We conclude that song is a key premating reproductive barrier in birds, but faster evolution of this reproductive barrier between populations does not consistently result in faster diversification between species.


Crustaceana ◽  
1993 ◽  
Vol 65 (2) ◽  
pp. 265-277 ◽  
Author(s):  
Barbara A. Stewart

AbstractThe use of protein electrophoretic data for determining species boundaries in amphipods is addressed. Analysis of published literature on genetic differentiation in amphipods showed that pairs of allopatric populations which have genetic identities (I) above a value of 0.85 probably represent intraspecific populations, whereas pairs of populations which have genetic identities below about 0.45 probably represent different species. It was recommended that if I values fall between 0.45 and 0.85, additional factors such as evidence of a lack of gene flow between the populations, and concordant morphological variation should be considered.


Botany ◽  
2008 ◽  
Vol 86 (6) ◽  
pp. 587-594 ◽  
Author(s):  
Regina S. Baucom ◽  
Rodney Mauricio ◽  
Shu-Mei Chang

Plant death is the most common effect resulting from the application of glyphosate, the active ingredient in the herbicide Roundup®. Individual seedlings of the morning glory, Ipomoea purpurea L. Roth, however, have been shown to exhibit tolerance to glyphosate, surviving after what should have been a lethal dose. Those that grow and reach reproductive maturity often exhibit deformed anthers within what appear to be normally developed flowers. Ipomoea purpurea has a mixed mating system and normally has hermaphroditic flowers that are capable of both selfing and outcrossing. The deformed anthers do not produce pollen, essentially converting a hermaphroditic flower to a female. Here we describe this morphological change and investigate the reproductive consequences of anther deformation. First, there is phenotypic variation for the propensity of an individual to exhibit male sterility through deformed anthers in response to treatment, but a series of field and greenhouse studies suggest that this variation is not genetic. The male sterility is also transient; within an individual, the frequency of flowers with deformed anthers declines over time. Although flowers with deformed anthers do not produce pollen, we observed mixed effects on female function of such flowers. In the greenhouse, flowers with deformed anthers that were hand-pollinated produced as many seeds as flowers with normal anthers, suggesting no effect on female fertility. In the field, however, plants with a higher proportion of anther deformation set significantly fewer seeds than those untreated, suggesting either reduced female fertility, or a reproductive penalty in flowers with deformed anthers due to the inability to self pollinate. Thus, the presence of this trait could alter the selfing to outcrossing ratio in populations that are sprayed with the herbicide. Individuals that exhibited a higher proportion of anther deformation also produce fewer total flowers than untreated plants, suggesting that anther deformation is part of a suite of responses to damage by glyphosate.


2003 ◽  
Vol 17 (5) ◽  
pp. 680-689 ◽  
Author(s):  
F. Ishihama ◽  
C. Nakano ◽  
S. Ueno ◽  
M. Ajima ◽  
Y. Tsumura ◽  
...  

2019 ◽  
Vol 110 (3) ◽  
pp. 361-369 ◽  
Author(s):  
Katherine L Bell ◽  
Chris C Nice ◽  
Darrin Hulsey

Abstract In recent decades, an increased understanding of molecular ecology has led to a reinterpretation of the role of gene flow during the evolution of reproductive isolation and biological novelty. For example, even in the face of ongoing gene flow strong selection may maintain divergent polymorphisms, or gene flow may introduce novel biological diversity via hybridization and introgression from a divergent species. Herein, we elucidate the evolutionary history and genomic basis of a trophically polymorphic trait in a species of cichlid fish, Herichthys minckleyi. We explored genetic variation at 3 hierarchical levels; between H. minckleyi (n = 69) and a closely related species Herichthys cyanoguttatus (n = 10), between H. minckleyi individuals from 2 geographic locations, and finally between individuals with alternate morphotypes at both a genome-wide and locus-specific scale. We found limited support for the hypothesis that the H. minckleyi polymorphism is the result of ongoing hybridization between the 2 species. Within H. minckleyi we found evidence of geographic genetic structure, and using traditional population genetic analyses found that individuals of alternate morphotypes within a pool appear to be panmictic. However, when we used a locus-specific approach to examine the relationship between multi-locus genotype, tooth size, and geographic sampling, we found the first evidence for molecular genetic differences between the H. minckleyi morphotypes.


Parasitology ◽  
2000 ◽  
Vol 121 (4) ◽  
pp. 395-401 ◽  
Author(s):  
A. C. KRIST ◽  
C. M. LIVELY ◽  
E. P. LEVRI ◽  
J. JOKELA

Parasites should be better at infecting hosts from sympatric populations than allopatric populations most of the time (parasite local adaptation). In a previous study of a population of snail parasites (Microphallus sp.) from Lake Alexandrina, New Zealand, we found that Microphallus was more infective to snails (Potamopyrgus antipodarum) in shallow water but not in deep water. Here, we repeated the original study and also monitored the development of the parasite. We found that parasites from shallow water were more infective to hosts from shallow water and developed more rapidly in these hosts. In contrast, parasites from deep water were not more infective to hosts from deep water and did not develop more rapidly in them. These results suggest clinal variation in the susceptibility of these snails, with shallow-water snails more susceptible than deep-water snails. We offer 2 possible explanations for these results. First, gene flow in the Microphallus population is primarily from shallow to deep water, leading to an asymmetric pattern of local adaptation. Alternatively, snails from shallow water may be more susceptible for reasons independent of gene flow, perhaps due to differences in host condition between habitats.


2015 ◽  
Vol 156 (3) ◽  
pp. 301-311 ◽  
Author(s):  
Eduardo Tadeo ◽  
Jeffery L. Feder ◽  
Scott P. Egan ◽  
Hannes Schuler ◽  
Martin Aluja ◽  
...  

2005 ◽  
Vol 53 (5) ◽  
pp. 465 ◽  
Author(s):  
R. C. Barbour ◽  
B. M. Potts ◽  
R. E. Vaillancourt

Eucalyptus nitens (Deane & Maiden) Maiden has been extensively introduced to the island of Tasmania for plantation purposes. Natural hybridisation with two native species has already been confirmed and this study aimed to determine which other Tasmanian native species could potentially hybridise with E. nitens. Controlled and supplementary pollinations with E. nitens pollen were undertaken on all Tasmanian native species that are potentially at risk of exotic gene flow and hence genetic pollution. Across the seven species tested by using controlled pollinations, seed set per flower, following E. nitens pollinations, was significantly less than for intraspecific outcross pollinations. No significant differences were evident in the percentage of seed that germinated or the percentage of germinants that grew into healthy seedlings in the glasshouse. Hybridity was verified by morphometric analyses and F1 hybrid seedlings were clearly differentiated from parental species and generally intermediate in morphology. Supplementary E. nitens pollination of open-pollinated native flowers was conducted to simulate natural pollination where pollen competition would occur. Seven of the fifteen species tested produced F1 hybrids in this case; however, further crossing is required to verify failed cross combinations. Although E. nitens can potentially hybridise with many native species, the results from both supplementary and controlled pollinations suggest the presence of post-pollination barriers of varying strength that need to be considered in assessing the risk of exotic gene flow from plantations.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8976
Author(s):  
Lisa Chamberland ◽  
Fabian C. Salgado-Roa ◽  
Alma Basco ◽  
Amanda Crastz-Flores ◽  
Greta J. Binford ◽  
...  

Background Modern molecular analyses are often inconsistent with pre-cladistic taxonomic hypotheses, frequently indicating higher richness than morphological taxonomy estimates. Among Caribbean spiders, widespread species are relatively few compared to the prevalence of single island endemics. The taxonomic hypothesis Gasteracantha cancriformis circumscribes a species with profuse variation in size, color and body form. Distributed throughout the Neotropics, G. cancriformis is the only morphological species of Gasteracantha in the New World in this globally distributed genus. Methods We inferred phylogenetic relationships across Neotropical populations of Gasteracantha using three target genes. Within the Caribbean, we estimated genetic diversity, population structure, and gene flow among island populations. Results Our findings revealed a single widespread species of Gasteracantha throughout the Caribbean, G. cancriformis, while suggesting two recently divergent mainland populations that may represent separate species, diverging linages, or geographically isolated demes. The concatenated and COI (Cytochrome c oxidase subunit 1) phylogeny supported a Caribbean clade nested within the New World. Genetic variability was high between island populations for our COI dataset; however, gene flow was also high, especially between large, adjacent islands. We found structured genetic and morphological variation within G. cancriformis island populations; however, this variation does not reflect genealogical relationships. Rather, isolation by distance and local morphological adaptation may explain the observed variation.


Sign in / Sign up

Export Citation Format

Share Document