scholarly journals Time-dynamics of mitochondrial membrane potential reveal an inhibition of ATP synthesis in mitosis

2019 ◽  
Author(s):  
Joon Ho Kang ◽  
Georgios Katsikis ◽  
Max A. Stockslager ◽  
Daniel Lim ◽  
Michael B. Yaffe ◽  
...  

AbstractThe energetic demands of a cell are believed to increase during mitosis 1–7. As cells transit from G2 into mitosis, mitochondrial electron transport chain (ETC) activity increases 4,8,9, and cellular ATP levels progressively decrease until the metaphase-anaphase transition 3,7,10, consistent with elevated consumption. The rates of ATP synthesis during mitosis, however, have not been quantified. Here, we monitor mitochondrial membrane potential of single lymphocytes and demonstrate that cyclin-dependent kinase 1 (CDK1) activity causes mitochondrial hyperpolarization from G2/M until the metaphase-anaphase transition. By using an electrical circuit model of mitochondria, we quantify the time-dynamics of mitochondrial membrane potential under normal and perturbed conditions to extract mitochondrial ATP synthesis rates in mitosis. We found that mitochondrial ATP synthesis decreases by approximately 50 % during early mitosis, when CDK1 is active, and increases back to G2 levels during cytokinesis. Consistently, acute inhibition of mitochondrial ATP synthesis failed to delay cell division. Our results provide a quantitative understanding of mitochondrial bioenergetics in mitosis and challenge the traditional dogma that cell division is a highly energy demanding process.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Joon Ho Kang ◽  
Georgios Katsikis ◽  
Zhaoqi Li ◽  
Kiera M. Sapp ◽  
Max A. Stockslager ◽  
...  

Abstract The energetic demands of a cell are believed to increase during mitosis, but the rates of ATP synthesis and consumption during mitosis have not been quantified. Here, we monitor mitochondrial membrane potential of single lymphocytic leukemia cells and demonstrate that mitochondria hyperpolarize from the G2/M transition until the metaphase-anaphase transition. This hyperpolarization was dependent on cyclin-dependent kinase 1 (CDK1) activity. By using an electrical circuit model of mitochondria, we quantify mitochondrial ATP synthesis rates in mitosis from the single-cell time-dynamics of mitochondrial membrane potential. We find that mitochondrial ATP synthesis decreases by approximately 50% during early mitosis and increases back to G2 levels during cytokinesis. Consistently, ATP levels and ATP synthesis are lower in mitosis than in G2 in synchronized cell populations. Overall, our results provide insights into mitotic bioenergetics and suggest that cell division is not a highly energy demanding process.


2021 ◽  
Vol 8 ◽  
Author(s):  
Domenico Sergi ◽  
Natalie Luscombe-Marsh ◽  
Nenad Naumovski ◽  
Mahinda Abeywardena ◽  
Nathan O'Callaghan

The chain length of saturated fatty acids may dictate their impact on inflammation and mitochondrial dysfunction, two pivotal players in the pathogenesis of insulin resistance. However, these paradigms have only been investigated in animal models and cell lines so far. Thus, the aim of this study was to compare the effect of palmitic (PA) (16:0) and lauric (LA) (12:0) acid on human primary myotubes mitochondrial health and metabolic inflammation. Human primary myotubes were challenged with either PA or LA (500 μM). After 24 h, the expression of interleukin 6 (IL-6) was assessed by quantitative polymerase chain reaction (PCR), whereas Western blot was used to quantify the abundance of the inhibitor of nuclear factor κB (IκBα), electron transport chain complex proteins and mitofusin-2 (MFN-2). Mitochondrial membrane potential and dynamics were evaluated using tetraethylbenzimidazolylcarbocyanine iodide (JC-1) and immunocytochemistry, respectively. PA, contrarily to LA, triggered an inflammatory response marked by the upregulation of IL-6 mRNA (11-fold; P < 0.01) and a decrease in IκBα (32%; P < 0.05). Furthermore, whereas PA and LA did not differently modulate the levels of mitochondrial electron transport chain complex proteins, PA induced mitochondrial fragmentation (37%; P < 0.001), decreased MFN-2 (38%; P < 0.05), and caused a drop in mitochondrial membrane potential (11%; P < 0.01) compared to control, with this effect being absent in LA-treated cells. Thus, LA, as opposed to PA, did not trigger pathogenetic mechanisms proposed to be linked with insulin resistance and therefore represents a healthier saturated fatty acid choice to potentially preserve skeletal muscle metabolic health.


2002 ◽  
Vol 22 (1) ◽  
pp. 94-104 ◽  
Author(s):  
David S. McClintock ◽  
Matthew T. Santore ◽  
Vivian Y. Lee ◽  
Joslyn Brunelle ◽  
G. R. Scott Budinger ◽  
...  

ABSTRACT The mechanisms underlying cell death during oxygen deprivation are unknown. We report here a model for oxygen deprivation-induced apoptosis. The death observed during oxygen deprivation involves a decrease in the mitochondrial membrane potential, followed by the release of cytochrome c and the activation of caspase-9. Bcl-XL prevented oxygen deprivation-induced cell death by inhibiting the release of cytochrome c and caspase-9 activation. The ability of Bcl-XL to prevent cell death was dependent on allowing the import of glycolytic ATP into the mitochondria to generate an inner mitochondrial membrane potential through the F1F0-ATP synthase. In contrast, although activated Akt has been shown to inhibit apoptosis induced by a variety of apoptotic stimuli, it did not prevent cell death during oxygen deprivation. In addition to Bcl-XL, cells devoid of mitochondrial DNA (ρ° cells) that lack a functional electron transport chain were resistant to oxygen deprivation. Further, murine embryonic fibroblasts from bax −/− bak −/− mice did not die in response to oxygen deprivation. These data suggest that when subjected to oxygen deprivation, cells die as a result of an inability to maintain a mitochondrial membrane potential through the import of glycolytic ATP. Proapoptotic Bcl-2 family members and a functional electron transport chain are required to initiate cell death in response to oxygen deprivation.


1998 ◽  
Vol 275 (2) ◽  
pp. H484-H494 ◽  
Author(s):  
T. J. Delcamp ◽  
C. Dales ◽  
L. Ralenkotter ◽  
P. S. Cole ◽  
R. W. Hadley

The aim of this study was to investigate the role of mitochondrial ionic homeostasis in promoting reoxygenation-induced hypercontracture in cardiac muscle. Mitochondrial membrane potential and intramitochondrial Ca2+ concentration ([Ca2+]) were measured using confocal imaging in guinea pig ventricular myocytes exposed to anoxia and reoxygenation. Anoxia produced a variable, but often profound, mitochondrial depolarization. Some cells mounted a recovery of their mitochondrial membrane potential during reoxygenation; the depolarization was sustained in other cells. Recovery of the mitochondrial membrane potential seemed essential to avoid reoxygenation-induced hypercontracture. Reoxygenation also caused a sizable elevation in intramitochondrial [Ca2+], the amplitude of which was correlated with the likelihood of a cell undergoing hypercontracture. A sustained Ca2+load analogous to that seen during reoxygenation was imposed on cardiac mitochondria through permeabilization of the plasma membrane. Elevation of intracellular [Ca2+] to 800 nM caused a substantial mitochondrial depolarization. We propose that the conditions seen in guinea pig ventricular myocytes during reoxygenation are well suited to produce Ca2+-dependent mitochondrial depolarization, which may play a significant role in promoting irreversible cell injury.


1997 ◽  
Vol 78 (4) ◽  
pp. 1928-1934 ◽  
Author(s):  
Sam P. Mostafapour ◽  
Edward A. Lachica ◽  
Edwin W Rubel

Mostafapour, Sam P., Edward A. Lachica, and Edwin W Rubel. Mitochondrial regulation of calcium in the avian choclear nucleus. J. Neurophysiol. 78: 1928–1934, 1997. The role of mitochondria and the endoplasmic reticulum in buffering [Ca2+]i in response to imposed calcium loads in neurons of the chick cochlear nucleus, nucleus magnocellularis (NM), was examined. Intracellular calcium concentrations were measured using fluorometric videomicroscopy. After depolarization with 125 mM KCl, NM neurons demonstrate an increase in [Ca2+]i that returns to near-basal levels within 6 min. Addition of the protonophore carbonylcyanide m-chlorophenylhydrazone (CCCP) dissipated the mitochondrial membrane potential, as evidenced by increased fluorescence when cells were loaded with rhodamine-123. Two micromolar CCCP had minimal effect on baseline [Ca2+]i. However, 2 or 10 μM CCCP interfered with the ability of NM cells to buffer [Ca2+]i in response to KCl depolarization without significantly affecting peak [Ca2+]i. Oligomycin also interfered with postdepolarization regulation of [Ca2+]i, but blocked late (7–8 min postdepolarization) increases in [Ca2+]i caused by CCCP. Thapsigargin had no effect on baseline, peak, or postdepolarization [Ca2+]i in NM cells. These results suggest that normal mitochondrial membrane potential and ATP synthesis play an important role in buffering [Ca2+]i in response to imposed calcium loads in NM neurons. Furthermore, the endoplasmic reticulum does not appear to play a significant role in either of these processes. Thus increases in mitochondrial number and function noted in NM cells after deafferentation may represent an adaptive response to an increased cytosolic calcium load.


2021 ◽  
Author(s):  
Nadezda A. Brazhe ◽  
Evelina I. Nikelshparg ◽  
Adil A. Baizhumanov ◽  
Vera G. Grivennikova ◽  
Anna A. Semenova ◽  
...  

AbstractCytochrome c is an essential component of the electron transport chain (ETC), which regulates respiratory chain activity, oxygen consumption, and ATP synthesis. But the impact of conformational changes in cytochrome c on its function is not understood for lack of access to these changes in intact mitochondria. Here we describe a label-free tool that identifies conformational changes in cytochrome c heme and elucidates their function. We verify that molecule bond vibrations assessed by surface-enhanced Raman spectroscopy (SERS) is a reliable indicator of the planar heme configuration during activation of ETC and decrease in inner mitochondrial membrane potential. The planar conformation of cytochrome c heme enables its optimal orientation towards the heme of cytochrome c1 in complex III. This ensures a faster electron transfer, which is important during ETC speed-ups and acceleration of ATP synthesis. The ability of our tool to track mitochondrial function opens wide perspectives on cell bioenergetics.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1188-1188
Author(s):  
Claudia Morganti ◽  
Massimo Bonora ◽  
Kyoko Ito ◽  
Keisuke Ito

The role of mitochondria in the fate determination of hematopoietic stem and progenitor cells (HSPCs) is not solely limited to the switch from glycolysis to oxidative phosphorylation, but also involves alterations in mitochondrial features and properties, including mitochondrial membrane potential (ΔΨmt). Several research groups have used mitochondrial dyes and have showed that long term multi-lineage reconstitution is enriched in low ΔΨmt fraction. However, hematopoietic stem cells (HSCs) exhibit higher pump activity than mature populations, and this causes the enhanced extrusion of mitochondrial dyes used for measuring ΔΨmt, such as tetramethylrhodamine methyl ester (TMRM), which in turn can lead to biased results (Bonora M. et al, 2018). In this study, while considering the activity of xenobiotic efflux pumps in HSCs, we have assessed the equilibrium between electron transport chain (ETC) complexes and ATP production in order to elucidate the mechanism that sustain mitochondrial membrane potential in HSPCs. We first used flow analysis of HSCs and other bone marrow populations, stained by TMRM in presence of Verapamil, an efflux pump inhibitor, to show a downward trend in ΔΨmt along with hematopoietic differentiation. To validate high ΔΨmt as a key feature of HSCs, we measured Ki67 positivity to assess whether ΔΨmt is associated with cell cycle quiescence in HSPCs. When Lin-Sca-1+c-Kit+ (LSK) cells were separated into two fractions, based on their TMRM intensity, we found that the percentage of Ki67+ cells in LSK-High was lower than the one in LSK-Low, and were comparable to CD150+CD48- HSC-enriched fraction. Consistently, phenotypic HSCs preferentially reside in the TMRM high population, with less Ki67 positivity. Since ΔΨmt levels in the cells is determined by the balance between proton pumping (by ETC) and proton flow (by ATP synthase/complex V), we next assessed ETC complexes. The expression of ATP5A, a key subunit of complex V, and of NDUFV1, a subunit of complex I, were particularly weak in HSPCs and drastically increased following differentiation process, while no differences were detected in complex II subunit SDHA expression between HSCs and mature populations. Likewise, the activity of complex I increased following differentiation process, while the activity of complex II remained stable among HSC, LSK, and Lin− fractions. Interestingly, when the respective ratios of complex I and II to complex V were calculated, compared to complex I, a significantly higher ratio of complex II: complex V was found in HSPCs. Collectively, these data support the hypothesis that HSPCs have low proton flow comparing mature populations, but similar proton pumping activity, especially due to complex II, which finally results in a higher ΔΨmt. In order to deeply investigate the contribution of complex I, II and III to sustain ΔΨmt, the reduction of TMRM intensity after the administration of low dosages of their specific inhibitors (Rotenone, TTFA and Antimycin A, respectively) was analyzed. The reduction of TMRM intensity by Rotenone was observed in the committed cells, and the addition of Antimycin A led to a drop in TMRM intensity in all hematopoietic lineages. Critically, complex II inhibition by TTFA caused a substantial decrease of ΔΨmt, particularly in HSPCs. Finally, we investigated the functional importance of each ETC complex in HSCs, founding that TTFA, but not Rotenone, caused a reduction in in vitro colony-replating capacity, and a similar effect was observed after administration of Antimycin A. Altogether this study highlights complex II as a key regulator of ΔΨmt in HSPCs and suggests the distinct roles of complex I and complex II in hematopoiesis. Further characterization of the precise mechanisms regulating mitochondrial controls in HSCs will contribute to a better understanding of an active role of mitochondria in HSC homeostasis. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 215 (9) ◽  
pp. 2379-2395 ◽  
Author(s):  
Frank Cichocki ◽  
Cheng-Ying Wu ◽  
Bin Zhang ◽  
Martin Felices ◽  
Bianca Tesi ◽  
...  

Natural killer (NK) cells with adaptive immunological properties expand and persist in response to human cytomegalovirus. Here, we explored the metabolic processes unique to these cells. Adaptive CD3−CD56dimCD57+NKG2C+ NK cells exhibited metabolic hallmarks of lymphocyte memory, including increased oxidative mitochondrial respiration, mitochondrial membrane potential, and spare respiratory capacity. Mechanistically, we found that a short isoform of the chromatin-modifying transcriptional regulator, AT-rich interaction domain 5B (ARID5B), was selectively induced through DNA hypomethylation in adaptive NK cells. Knockdown and overexpression studies demonstrated that ARID5B played a direct role in promoting mitochondrial membrane potential, expression of genes encoding electron transport chain components, oxidative metabolism, survival, and IFN-γ production. Collectively, our data demonstrate that ARID5B is a key regulator of metabolism in human adaptive NK cells, which, if targeted, may be of therapeutic value.


Sign in / Sign up

Export Citation Format

Share Document