scholarly journals Evolutionary relationships among Massospora spp. (Entomophthorales), obligate pathogens of cicadas

2019 ◽  
Author(s):  
Angie M. Macias ◽  
David M. Geiser ◽  
Jason E. Stajich ◽  
Piotr Łukasik ◽  
Claudio Veloso ◽  
...  

AbstractThe fungal genus Massospora (Zoopagomycota: Entomophthorales) includes more than a dozen obligate, sexually transmissible pathogenic species that infect cicadas (Hemiptera) worldwide. At least two species are known to produce psychoactive compounds during infection, which has garnered considerable interest for this enigmatic genus. As with many Entomophthorales, the evolutionary relationships and host associations of Massospora spp. are not well understood. The acquisition of M. diceroproctae from Arizona, M. tettigatis from Chile, and M. platypediae from California and Colorado provided an opportunity to conduct molecular phylogenetic analyses and morphological studies to investigate if these fungi represent a monophyletic group and delimit species boundaries. In a three-locus phylogenetic analysis including the D1–D2 domains of the nuclear 28S rRNA gene (28S), elongation factor 1 alpha-like (EFL), and beta-tubulin (BTUB), Massospora was resolved in a strongly supported monophyletic group containing four well-supported genealogically exclusive lineages, based on two of three methods of phylogenetic inference. There was incongruence among the single-gene trees: two methods of phylogenetic inference recovered trees with either the same topology as the 3-gene concatenated tree (EFL), or a basal polytomy (28S, BTUB). Massospora levispora and M. platypediae isolates formed a single lineage in all analyses and are synonymized here as M. levispora. Massospora diceroproctae was sister to M. cicadina in all three single-gene trees and on an extremely long branch relative to the other Massospora, and even the outgroup taxa, which may reflect an accelerated rate of molecular evolution and/or incomplete taxa sampling. The results of the morphological study presented here indicate that spore measurements may not be phylogenetically or diagnostically informative. Despite recent advances in understanding the ecology of Massospora, much about its host range and diversity remains unexplored. The emerging phylogenetic framework can provide a foundation for exploring co-evolutionary relationships with cicada hosts and the evolution of behavior-altering compounds.

2010 ◽  
Vol 24 (3) ◽  
pp. 238 ◽  
Author(s):  
Joseph C. Spagna ◽  
Sarah C. Crews ◽  
Rosemary G. Gillespie

The ability to survive in a terrestrial environment was a major evolutionary hurdle for animals that, once passed, allowed the diversification of most arthropod and vertebrate lineages. Return to a truly aquatic lifestyle has occurred only rarely among terrestrial lineages, and is generally associated with modifications of the respiratory system to conserve oxygen and allow extended periods of apnea. Among chelicerates, in particular spiders, where the circulatory system also serves as a hydrostatic skeleton, very few taxa have exploited aquatic environments, though these environments are abundant and range from freshwater ponds to the marine intertidal and relictual (salt) lakes. The traditional systematic positions of the taxa inhabiting these environments are controversial. Partitioned Bayesian analysis using a doublet model for stems in the nearly complete 18S rRNA gene (~1800 nt) and in the D2 and D3 regions of the 28S rRNA gene (~690 nt), and standard models for loops and full protein-coding histone H3 (349 nt) partitions (totalling 3133 bp when aligned) of dictynoid spiders and related lineages revealed that the only truly aquatic spider species, Argyroneta aquatica (Clerck, 1767) (Cybaeidae Banks, 1892), belongs in a clade containing other taxa with unusual habitat affinities related to an aquatic existence, including occupation of semi-aquatic (intertidal) areas (Desidae Pocock, 1985: Paratheuma spp.) and highly alkaline salt-crusts (Dictynidae O. Pickard-Cambridge, 1871: Saltonia incerta (Banks, 1898)). In a contrasting pattern, other spiders that also occupy intertidal zones, including some other members of the family Desidae (Desis spp., Badumna longinqua (L. Koch, 1867)), are an independently derived clade found primarily in the southern hemisphere. Use of the doublet model reduced some branch-support values in the single-gene trees for rRNA data, but resulted in a robust combined-data phylogeny from 18S rRNA, 28S rRNA, and histone H3. This combination of results – reduction in support in single-gene trees and gain in support in combined-data trees –is consistent with use of the doublet model reducing problematic signal from non-independent base pairs in individual data partitions, resulting in improved resolution in the combined-data analyses.


Author(s):  
Ran Li ◽  
Wenbao Zhuang ◽  
Congcong Wang ◽  
Hamed El-Serehy ◽  
Saleh A. Al-Farraj ◽  
...  

The morphology and molecular phylogeny of Plagiopyla ovata Kahl, 1931, a poorly known anaerobic ciliate, were investigated based on a population isolated from sand samples collected from the Yellow Sea coast at Qingdao, PR China. Details of the oral ciliature are documented for the first time to our knowledge and an improved species diagnosis is given. The small subunit ribosomal RNA (SSU rRNA) gene was newly sequenced and phylogenetic analyses revealed that P. ovata clusters within the monophyletic family Plagiopylidae. However, evolutionary relationships within both the family Plagiopylidae and the genus Plagiopyla remain obscure owing to undersampling, the lack of sequence data from known species and low nodal support or unstable topologies in gene trees. A key to the identification of the species of the genus Plagiopyla with validly published names is also supplied.


2020 ◽  
Author(s):  
Matthew H Van Dam ◽  
James B Henderson ◽  
Lauren Esposito ◽  
Michelle Trautwein

Abstract Ultraconserved genomic elements (UCEs) are generally treated as independent loci in phylogenetic analyses. The identification pipeline for UCE probes does not require prior knowledge of genetic identity, only selecting loci that are highly conserved, single copy, without repeats, and of a particular length. Here, we characterized UCEs from 11 phylogenomic studies across the animal tree of life, from birds to marine invertebrates. We found that within vertebrate lineages, UCEs are mostly intronic and intergenic, while in invertebrates, the majority are in exons. We then curated four different sets of UCE markers by genomic category from five different studies including: birds, mammals, fish, Hymenoptera (ants, wasps, and bees), and Coleoptera (beetles). Of genes captured by UCEs, we find that many are represented by two or more UCEs, corresponding to nonoverlapping segments of a single gene. We considered these UCEs to be nonindependent, merged all UCEs that belonged to a particular gene, constructed gene and species trees, and then evaluated the subsequent effect of merging cogenic UCEs on gene and species tree reconstruction. Average bootstrap support for merged UCE gene trees was significantly improved across all data sets apparently driven by the increase in loci length. Additionally, we conducted simulations and found that gene trees generated from merged UCEs were more accurate than those generated by unmerged UCEs. As loci length improves gene tree accuracy, this modest degree of UCE characterization and curation impacts downstream analyses and demonstrates the advantages of incorporating basic genomic characterizations into phylogenomic analyses. [Anchored hybrid enrichment; ants; ASTRAL; bait capture; carangimorph; Coleoptera; conserved nonexonic elements; exon capture; gene tree; Hymenoptera; mammal; phylogenomic markers; songbird; species tree; ultraconserved elements; weevils.]


Nematology ◽  
2017 ◽  
Vol 19 (3) ◽  
pp. 333-350 ◽  
Author(s):  
Shigeyuki Sekimoto ◽  
Taketo Uehara ◽  
Takayuki Mizukubo

The Korean cyst nematode, Heterodera koreana, was recorded for the first time from Japan and characterised morphologically, morphometrically and molecularly. In total, 41 populations were detected from soil samples collected from the rhizosphere of four bamboo species in Japan: 31 populations from moso bamboo (Phyllostachys edulis), seven from madake (P. bambusoides), two from henon bamboo (P. nigra var. henonis) and one from fish pole bamboo (P. aurea). The morphology and morphometrics of the Japanese population were in agreement with those of the original description of H. koreana from South Korea and other subsequent descriptions from China and Iran, with the exception of some minor differences. The results of the phylogenetic analyses of the D2-D3 expansion segments of 28S rRNA gene and ITS rRNA gene sequences confirmed the species identification and phylogenetic relationship of H. koreana with other Heterodera species. The COI mtDNA gene sequences were obtained for the first time for H. koreana. Three COI haplotypes found in Japanese H. koreana populations showed a characteristic geographical distribution in Japan.


Parasitology ◽  
2011 ◽  
Vol 138 (13) ◽  
pp. 1760-1777 ◽  
Author(s):  
LAURA M. McDONAGH ◽  
JAMIE R. STEVENS

SUMMARYThe Calliphoridae include some of the most economically significant myiasis-causing flies in the world – blowflies and screwworm flies – with many being notorious for their parasitism of livestock. However, despite more than 50 years of research, key taxonomic relationships within the family remain unresolved. This study utilizes nucleotide sequence data from the protein-coding genes COX1 (mitochondrial) and EF1α (nuclear), and the 28S rRNA (nuclear) gene, from 57 blowfly taxa to improve resolution of key evolutionary relationships within the family Calliphoridae. Bayesian phylogenetic inference was carried out for each single-gene data set, demonstrating significant topological difference between the three gene trees. Nevertheless, all gene trees supported a Calliphorinae-Luciliinae subfamily sister-lineage, with respect to Chrysomyinae. In addition, this study also elucidates the taxonomic and evolutionary status of several less well-studied groups, including the genus Bengalia (either within Calliphoridae or as a separate sister-family), genus Onesia (as a sister-genera to, or sub-genera within, Calliphora), genus Dyscritomyia and Lucilia bufonivora, a specialised parasite of frogs and toads. The occurrence of cross-species hybridisation within Calliphoridae is also further explored, focusing on the two economically significant species Lucilia cuprina and Lucilia sericata. In summary, this study represents the most comprehensive molecular phylogenetic analysis of family Calliphoridae undertaken to date.


Zootaxa ◽  
2020 ◽  
Vol 4819 (2) ◽  
pp. 295-315
Author(s):  
HIROSHI KAJIHARA

The heteronemertean Cerebratulus orochi sp. nov. is described based on material collected intertidally at a muddy beach in Akkeshi, northern Japan. For the last 80 years, the species has been confused with Cerebratulus marginatus Renier, 1804; the latter was originally described from the Adriatic and once believed to occur in many places in the northern hemisphere including Japan. Cerebratulus orochi sp. nov. is morphologically different from all the congeners including C. marginatus by the following combination of characters: several layers of diagonal-muscle meshwork coated with connective tissue, proximo-distally distributed in cross section from the distal portion of the body-wall outer longitudinal muscle layer to the cutis-gland zone throughout the anterior portion of the body from the precerebral to the foregut regions; the cephalic vascular system consisting of lateral and mid-dorsal vessels; and the sub-rhynchocoelic vessel possessing a pair of antero-lateral diverticula before the former forks posteriorly into a pair of lower lateral vessels in the post-cerebral, pre-oral region. Previous records of C. marginatus from Japanese waters are no longer considered to be substantiated. Multi-locus phylogenetic analyses based on the mitochondrial 16S rRNA and cytochrome c oxidase subunit I (COI), as well as the nuclear 18S rRNA, 28S rRNA, and histone H3 genes among heteronemerteans comprising the “Cerebratulus clade” indicated that C. orochi sp. nov. was closely related to C. cf. marginatus from the US Pacific coast. A MegaBLAST search at the NCBI website with the 16S rRNA gene sequence from C. orochi sp. nov. followed by a couple of species delimitation analyses suggests that larvae of the species are also distributed in Vostok Bay, Far East Russia.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Roman Labuda ◽  
Andreas Bernreiter ◽  
Doris Hochenauer ◽  
Christoph Schüller ◽  
Alena Kubátová ◽  
...  

A new species, Saksenaea dorisiae (Mucoromycotina, Mucorales), isolated from a water sample originating from a private well in Manastirica, Petrovac, in the Republic of Serbia (Europe), is described and illustrated. The new taxon is well supported by multilocus phylogenetic analysis that included the internal transcribed spacer (ITS) region, domains D1 and D2 of the 28S rRNA gene (LSU), and translation elongation factor-1α gene (tef-1α), and it is resolved in a clade with S. oblongispora and S. trapezispora. This fungus is characterized by its moderately slow growth at 15 and 37°C, sparse rhizoids, conical-shaped sporangia, and short-cylindrical sporangiospores. Saksenaea dorisiae is a member of the opportunistic pathogenic genus often involved in severe human and animal mucormycoses encountered in tropical and subtropical regions. Despite its sensitivity to several conventional antifungals (terbinafine and ciclopirox), the fungus can potentially evoke clinically challenging infections. This is the first novel taxon of the genus Saksenaea described from the moderately continental climate area of Europe.


Nematology ◽  
2017 ◽  
Vol 19 (6) ◽  
pp. 681-695 ◽  
Author(s):  
László Barsi ◽  
Francesca De Luca

Paralongidorus francolambertii sp. n., a bisexual species found in the rhizosphere of silver lime (Tilia tomentosa) and common juniper (Juniperus communis), is described. The species is characterised by its medium to large size (L = 5.86-8.29 mm) and slender body (a = 143-197), a lip region flattened with rounded profile, clearly offset from the body by a deep constriction, a narrow neck between the head and body, a shoulder-like body posterior to the neck, a stirrup-shaped amphidial fovea, with conspicuous slit-like aperture, lying on the lateral cuticular collar, a moderately long odontostyle ca 140 μm long, a guide ring located at ca 28 μm from anterior end, a tail terminus with thickened outer cuticular layer in both sexes, and males with spicules ca 52 μm long. The D2-D3 expansion domains of the 28S rRNA gene and the ITS-containing region of P. francolambertii sp. n. were amplified and sequenced. Phylogenetic analyses by using the Maximum Likelihood method showed that P. francolambertii sp. n. had a sister relationship with P. rex and that all Paralongidorus species formed a well-supported group.


Phytotaxa ◽  
2018 ◽  
Vol 344 (1) ◽  
pp. 24 ◽  
Author(s):  
PAMELA RODRIGUEZ-FLAKUS

Palicella lueckingii is a newly described corticolous lecideoid lichen from the Malalcahuelo National Reserve growing on the bark of Araucaria araucana in Chile. Detailed morphological studies and inference from molecular phylogenetic analyses, based on maximum likelihood and Bayesian analyses of single gene locus (ITS), clearly indicate that the new species is a member of the recently introduced genus Palicella. Palicella lueckingii is most closely related to P. glaucopa, but clearly differs in having smaller ascospores, comparatively thicker thallus, epruinose apothecia, lack of oil droplets inside of exciple and presence of thiophanic acid as a major metabolite.


Nematology ◽  
2015 ◽  
Vol 17 (8) ◽  
pp. 953-966 ◽  
Author(s):  
Alberto Troccoli ◽  
Monica Oreste ◽  
Eustachio Tarasco ◽  
Elena Fanelli ◽  
Francesca De Luca

Several juvenile and adult nematodes were isolated after dissection of pupae and adults of the red palm weevil,Rhynchophorus ferrugineus, recovered from an infestedPhoenix canariensisChabaud exemplar in Bari, Italy. Two species of nematodes were recovered,Teratorhabditis synpapillataandMononchoides macrospiculumn. sp. which is described herein. The mitochondrial cytochrome oxidase I (COI), the ITS-containing region, the 18S rRNA gene (SSU) and the D2-D3 expansion domains of the 28S rRNA gene (LSU) were amplified and sequenced. The new species,M. macrospiculumn. sp., is described at morphological and molecular level. Phylogenetic analyses using SSU and LSU sequences placedM. macrospiculumn. sp. together withM. composticolaandM. striatus. The sequences of the Italian population ofT. synpapillataare identical to those ofT. synpapillatafrom Japan. This is the first report on the association ofM. macrospiculumn. sp. andT. synpapillatawith the red palm weevil in Europe.


Sign in / Sign up

Export Citation Format

Share Document