scholarly journals Evolution toward maximum transport capacity of the Ttg2 ABC system in Pseudomonas aeruginosa

2019 ◽  
Author(s):  
Daniel Yero ◽  
Lionel Costenaro ◽  
Oscar Conchillo-Solé ◽  
Mireia Díaz-Lobo ◽  
Adrià Mayo ◽  
...  

AbstractIn Pseudomonas aeruginosa, Ttg2D is the soluble periplasmic phospholipid-binding component of an ABC transport system thought to be involved in maintaining the asymmetry of the outer membrane. The crystallographic structure of Ttg2D at 2.5Å resolution reveals that this protein can bind two diacyl phospholipids. Native and denaturing mass spectrometry experiments confirm that Ttg2D binds two phospholipid molecules, which may have different head groups. Analysis of the available structures of Ttg2D orthologs allowed us to classify this protein family as a novel substrate-binding protein fold and to venture the evolutionary events that differentiated the orthologs binding one or two phospholipids. In addition, gene knockout experiments in P. aeruginosa PAO1 and multidrug-resistant strains show that disruption of this system leads to outer membrane permeabilization. This demonstrates the role of this system in low-level intrinsic resistance against certain antibiotics that use a lipid-mediated pathway to permeate through membranes.

2020 ◽  
Author(s):  
Daniel Yero ◽  
Mireia Díaz-Lobo ◽  
Lionel Costenaro ◽  
Oscar Conchillo-Sole ◽  
Adrià Mayo ◽  
...  

Abstract In Pseudomonas aeruginosa, Ttg2D is the soluble periplasmic phospholipid-binding component of an ABC transport system thought to be involved in maintaining the asymmetry of the outer membrane. The crystallographic structure of Ttg2D at 2.5 Å resolution reveals that this protein can accommodate four acyl chains. Analysis of the available structures of Ttg2D orthologs shows that they conform a new substrate-binding-protein structural cluster. Native and denaturing mass spectrometry experiments confirm that Ttg2D, produced both heterologously and homologously and isolated from the periplasm, can carry two diacyl glycerophospholipids as well as one cardiolipin. Binding is notably promiscuous, allowing the transport of various molecular species. In vitro binding assays coupled to native mass spectrometry show that binding of cardiolipin is spontaneous. Gene knockout experiments in P. aeruginosa multidrug-resistant strains reveal that the Ttg2 system is involved in low-level intrinsic resistance against certain antibiotics that use a lipid-mediated pathway to permeate through membranes.


2007 ◽  
Vol 51 (9) ◽  
pp. 3190-3198 ◽  
Author(s):  
Myrielle Dupont ◽  
Chloë E. James ◽  
Jacqueline Chevalier ◽  
Jean-Marie Pagès

ABSTRACT Bacterial adaptation to external stresses and toxic compounds is a key step in the emergence of multidrug-resistant strains that are a serious threat to human health. Although some of the proteins and regulators involved in antibiotic resistance mechanisms have been described, no information is available to date concerning the early bacterial response to external stresses. Here we report that the expression of ompX, encoding an outer membrane protein, is increased during early exposure to drugs or environmental stresses. At the same time, the level of ompF porin expression is noticeably affected. Because of the role of these proteins in membrane permeability, these data suggest that OmpF and OmpX are involved in the control of the penetration of antibiotics such as β-lactams and fluoroquinolones through the enterobacterial outer membrane. Consequently, the early control of ompX and ompF induced by external stresses may represent a preliminary response to antibiotics, thus triggering the initial bacterial line of defense against antibiotherapy.


1982 ◽  
Vol 28 (2) ◽  
pp. 169-175 ◽  
Author(s):  
R. Allan Scudamore ◽  
Morris Goldner

The role of the outer membrane (OM) was investigated in relation to the high level of intrinsic antibiotic resistance of Pseudomonas aeruginosa ATCC 9027. OM penetration barriers were measured by comparing turbidimetric growth curves of EDTA-treated and normal cells exposed to carbenicillin, moxalactam (LY 127935), gentamicin, tobramycin, rifampin, novobiocin, and vancomycin. OM barriers were also measured for carbenicillin and moxalactam in P. aeruginosa strain K 799/61, a hypersusceptible mutant presumed to have lost its penetration barrier in the cell envelope. Most antibiotics penetrated the OM efficiently and there was little difference between the two strains. The evidence therefore suggests that intrinsic resistance of P. aeruginosa, especially to the beta-lactam antibiotics, is not mainly due to the OM. A penetration barrier situated deeper within the cell envelope is hypothesized, the size of which in relation to any antibiotic may be estimated by comparing the IC50 values of EDTA-treated cells of the two strains.


2014 ◽  
Vol 58 (7) ◽  
pp. 3774-3784 ◽  
Author(s):  
Yves Briers ◽  
Maarten Walmagh ◽  
Barbara Grymonprez ◽  
Manfred Biebl ◽  
Jean-Paul Pirnay ◽  
...  

ABSTRACTArtilysins constitute a novel class of efficient enzyme-based antibacterials. Specifically, they covalently combine a bacteriophage-encoded endolysin, which degrades the peptidoglycan, with a targeting peptide that transports the endolysin through the outer membrane of Gram-negative bacteria. Art-085, as well as Art-175, its optimized homolog with increased thermostability, are each composed of the sheep myeloid 29-amino acid (SMAP-29) peptide fused to the KZ144 endolysin. In contrast to KZ144, Art-085 and Art-175 pass the outer membrane and killPseudomonas aeruginosa, including multidrug-resistant strains, in a rapid and efficient (∼5 log units) manner. Time-lapse microscopy confirms that Art-175 punctures the peptidoglycan layer within 1 min, inducing a bulging membrane and complete lysis. Art-175 is highly refractory to resistance development by naturally occurring mutations. In addition, the resistance mechanisms against 21 therapeutically used antibiotics do not show cross-resistance to Art-175. Since Art-175 does not require an active metabolism for its activity, it has a superior bactericidal effect againstP. aeruginosapersisters (up to >4 log units compared to that of the untreated controls). In summary, Art-175 is a novel antibacterial that is well suited for a broad range of applications in hygiene and veterinary and human medicine, with a unique potential to target persister-driven chronic infections.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Daniel Yero ◽  
Mireia Díaz-Lobo ◽  
Lionel Costenaro ◽  
Oscar Conchillo-Solé ◽  
Adrià Mayo ◽  
...  

AbstractIn Pseudomonas aeruginosa, Ttg2D is the soluble periplasmic phospholipid-binding component of an ABC transport system thought to be involved in maintaining the asymmetry of the outer membrane. Here we use the crystallographic structure of Ttg2D at 2.5 Å resolution to reveal that this protein can accommodate four acyl chains. Analysis of the available structures of Ttg2D orthologs shows that they conform a new substrate-binding-protein structural cluster. Native and denaturing mass spectrometry experiments confirm that Ttg2D, produced both heterologously and homologously and isolated from the periplasm, can carry two diacyl glycerophospholipids as well as one cardiolipin. Binding is notably promiscuous, allowing the transport of various molecular species. In vitro binding assays coupled to native mass spectrometry show that binding of cardiolipin is spontaneous. Gene knockout experiments in P. aeruginosa multidrug-resistant strains reveal that the Ttg2 system is involved in low-level intrinsic resistance against certain antibiotics that use a lipid-mediated pathway to permeate through membranes.


2021 ◽  
Vol 22 (10) ◽  
pp. 5328
Author(s):  
Miao Ma ◽  
Margaux Lustig ◽  
Michèle Salem ◽  
Dominique Mengin-Lecreulx ◽  
Gilles Phan ◽  
...  

One of the major families of membrane proteins found in prokaryote genome corresponds to the transporters. Among them, the resistance-nodulation-cell division (RND) transporters are highly studied, as being responsible for one of the most problematic mechanisms used by bacteria to resist to antibiotics, i.e., the active efflux of drugs. In Gram-negative bacteria, these proteins are inserted in the inner membrane and form a tripartite assembly with an outer membrane factor and a periplasmic linker in order to cross the two membranes to expulse molecules outside of the cell. A lot of information has been collected to understand the functional mechanism of these pumps, especially with AcrAB-TolC from Escherichia coli, but one missing piece from all the suggested models is the role of peptidoglycan in the assembly. Here, by pull-down experiments with purified peptidoglycans, we precise the MexAB-OprM interaction with the peptidoglycan from Escherichia coli and Pseudomonas aeruginosa, highlighting a role of the peptidoglycan in stabilizing the MexA-OprM complex and also differences between the two Gram-negative bacteria peptidoglycans.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Wu Li ◽  
Wanyan Deng ◽  
Jianping Xie

Tuberculosis, caused by Mycobacterium tuberculosis, remains a leading cause of morbidity and mortality globally, with nearly 10.4 million new cases of incidence and over 1.7 million deaths annually. Drug-resistant M. tuberculosis strains, especially multidrug-resistant or extensively drug-resistant strains, have further intensified the problem associated with tuberculosis control. Host-directed therapy is a promising alternative for tuberculosis control. IL-32 is increasingly recognized as an important host molecule against tuberculosis. In this review, we highlight the proinflammatory properties of IL-32 and the mode of action of IL-32 in mycobacterial infections to inspire the development of novel immunity-based countermeasures and host-directed therapies against tuberculosis.


Sign in / Sign up

Export Citation Format

Share Document