scholarly journals Dynamic DNA-based information storage

2019 ◽  
Author(s):  
Kevin N. Lin ◽  
Albert J. Keung ◽  
James M. Tuck

AbstractTechnological leaps are often driven by key innovations that transform the underlying architectures of systems. Current DNA storage systems largely rely on polymerase chain reaction, which broadly informs how information is encoded, databases are organized, and files are accessed. Here we show that a hybrid ‘toehold’ DNA structure can unlock a fundamentally different, dynamic DNA-based information storage system architecture with broad advantages. This innovation increases theoretical storage densities and capacities by eliminating non-specific DNA-DNA interactions common in PCR and increasing the encodable sequence space. It also provides a physical handle with which to implement a range of in-storage file operations. Finally, it reads files non-destructively by harnessing the natural role of transcription in accessing information from DNA. This simple but powerful toehold structure lays the foundation for an information storage architecture with versatile capabilities.

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Raquel Weber ◽  
Ana Paula Santin Bertoni ◽  
Laura Walter Bessestil ◽  
Ilma Simoni Brum ◽  
Tania Weber Furlanetto

Goiter is more common in women, suggesting that estrogen could be involved in its physiopathology. The presence of classical estrogen receptors (ERαand ERβ) has been described in thyroid tissue, suggesting a direct effect of estrogen on the gland. A nonclassic estrogen receptor, the G-protein-coupled estrogen receptor (GPER1), has been described recently in several tissues. However, in goiter, the presence of this receptor has not been studied yet. We investigated GPER1 gene and protein expressions in normal thyroid and goiter using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot, respectively. In normal thyroid (n=16) and goiter (n=19), GPER1 gene was expressed in all samples, while GPER1 protein was expressed in all samples of normal thyroid (n=15) but in only 72% of goiter samples (n=13). When comparing GPER1 gene and protein levels in both conditions, gene expression and protein levels were higher in normal thyroid than in goiter, suggesting a role of this receptor in this condition. Further studies are needed to elucidate the role of GPER1 in normal thyroid and goiter.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Ming Liu ◽  
Zikun Xie ◽  
Guang Sun ◽  
Liujun Chen ◽  
Dake Qi ◽  
...  

Abstract Background Osteoarthritis (OA) is the most prevalent form of arthritis and the major cause of disability and overall diminution of quality of life in the elderly population. Currently there is no cure for OA, partly due to the large gaps in our understanding of its underlying molecular and cellular mechanisms. Macrophage migration inhibitory factor (MIF) is a procytokine that mediates pleiotropic inflammatory effects in inflammatory diseases such as rheumatoid arthritis (RA) and ankylosing spondylitis (AS). However, data on the role of MIF in OA is limited with conflicting results. We undertook this study to investigate the role of MIF in OA by examining MIF genotype, mRNA expression, and protein levels in the Newfoundland Osteoarthritis Study. Methods One hundred nineteen end-stage knee/hip OA patients, 16 RA patients, and 113 healthy controls were included in the study. Two polymorphisms in the MIF gene, rs755622, and -794 CATT5-8, were genotyped using polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) and PCR followed by automated capillary electrophoresis, respectively. MIF mRNA levels in articular cartilage and subchondral bone were measured by quantitative polymerase chain reaction. Plasma concentrations of MIF, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) were measured by enzyme-linked immunosorbent assay. Results rs755622 and -794 CATT5-8 genotypes were not associated with MIF mRNA or protein levels or OA (all p ≥ 0.19). MIF mRNA level in cartilage was lower in OA patients than in controls (p = 0.028) and RA patients (p = 0.004), while the levels in bone were comparable between OA patients and controls (p = 0.165). MIF protein level in plasma was lower in OA patients than in controls (p = 3.01 × 10−10), while the levels of TNF-α, IL-6 and IL-1β in plasma were all significantly higher in OA patients than in controls (all p ≤ 0.0007). Multivariable logistic regression showed lower MIF and higher IL-1β protein levels in plasma were independently associated with OA (OR per SD increase = 0.10 and 8.08; 95% CI = 0.04–0.19 and 4.42–16.82, respectively), but TNF-α and IL-6 became non-significant. Conclusions Reduced MIF mRNA and protein expression in OA patients suggested MIF might have a protective role in OA and could serve as a biomarker to differentiate OA from other joint disorders.


Author(s):  
Jaeho Jeong ◽  
Seong-Joon Park ◽  
Jae-Won Kim ◽  
Jong-Seon No ◽  
Ha Hyeon Jeon ◽  
...  

Abstract Motivation In DNA storage systems, there are tradeoffs between writing and reading costs. Increasing the code rate of error-correcting codes may save writing cost, but it will need more sequence reads for data retrieval. There is potentially a way to improve sequencing and decoding processes in such a way that the reading cost induced by this tradeoff is reduced without increasing the writing cost. In past researches, clustering, alignment, and decoding processes were considered as separate stages but we believe that using the information from all these processes together may improve decoding performance. Actual experiments of DNA synthesis and sequencing should be performed because simulations cannot be relied on to cover all error possibilities in practical circumstances. Results For DNA storage systems using fountain code and Reed-Solomon (RS) code, we introduce several techniques to improve the decoding performance. We designed the decoding process focusing on the cooperation of key components: Hamming-distance based clustering, discarding of abnormal sequence reads, RS error correction as well as detection, and quality score-based ordering of sequences. We synthesized 513.6KB data into DNA oligo pools and sequenced this data successfully with Illumina MiSeq instrument. Compared to Erlich’s research, the proposed decoding method additionally incorporates sequence reads with minor errors which had been discarded before, and thuswas able to make use of 10.6–11.9% more sequence reads from the same sequencing environment, this resulted in 6.5–8.9% reduction in the reading cost. Channel characteristics including sequence coverage and read-length distributions are provided as well. Availability The raw data files and the source codes of our experiments are available at: https://github.com/jhjeong0702/dna-storage.


2018 ◽  
Vol 16 ◽  
pp. 205873921876729
Author(s):  
An Wan ◽  
Daodong Liu

Osteoporosis is a chronic multifactorial disease characterized by deterioration of bone mass and is vulnerable to bone fracture. Plasminogen activator inhibitor-1 (PAI-1) is an important molecule for maintenance of optimum bone mass. Several single-nucleotide polymorphisms (SNPs) in PAI-1 have been reported to alter PAI-1 expression and/or the translational level. In this report, we explored the possible role of common PAI-1 gene polymorphisms on predisposition to osteoporosis in a Chinese cohort. A total of 364 post-menopausal Chinese women diagnosed of having osteoporosis and 350 healthy females hailing from similar areas were enrolled in this study. Five common SNPs (−844G > A, −6754G/5G, +43G > A, +9785G > A and +11053T > G) were genotyped by polymerase chain reaction (PCR) followed by restriction fragment length polymorphism (RFLP). Relative expression of PAI-1 mRNA and plasma PAI-1 levels were quantified by reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Prevalence of homozygous mutant (5G/5G) and minor allele (5G) of PAI-1 (−675 4G/5G) polymorphism was significantly more frequent in patients than in healthy controls (5G/5G: P < 0.0001, odds ratio (OR) = 3.18; 5G: P < 0.0001, OR = 1.65). Both plasma PAI-1 and relative mRNA expression levels were significantly lower in patients compared to healthy controls. Interestingly, the quantity of plasma PAI-1 and mRNA expression was correlated with PAI-1 (−675 4G/5G) polymorphism: subjects with 4G/4G genotype had elevated PAI-1 in comparison to homozygous mutant, and displayed lower quantity of PAI-1 protein and mRNA values. PAI-1 (−675 4G/5G) mutant is associated with susceptibility to development of osteoporosis in post-menopausal Chinese women. Furthermore, this variant in the promoter region alters plasma protein levels and relative expression of PAI-1.


2017 ◽  
Vol 16 (4) ◽  
pp. 38-45
Author(s):  
D. A. Ryabchikov ◽  
I. K. Vorotnikov ◽  
T. P. Kazubskaya ◽  
S. S. Lukina ◽  
E. A. Filippova ◽  
...  

Background. Epigenetic changes of TSG are supposed as the most fine and active genes regulation mechanism in particular breast cancer (BC) genes pathway development. The most valuable results are awaited for methylation role of genes located on the short arm of chromosome 3 with also MGMT gene (10q26) in BC pathogenesis because of their ambiguous data for methylation status in tumors. Objective: to illustrate the specific methylation role of the RASSF1A, SEMA3B, RARß2, RHOA, GPX1, USP4, DAG1, NKIRAS1 and MGMT genes promoter regions in BC pathogenesis. Materials and methods. Sample set of 174 BC patients consists of tumor and surrounding histologically normal tissue that were collected and clinically characterized in the N.N. Blokhin National Medical Research Center of Oncology. Two substantive methods were used to evaluate DNA methylation status. To analyse RASSF1A, SEMA3B, RARß2 and MGMT genes methylation we used polymerase chain reaction specific for the methylated allele. Whereas for analyses RHOA, GPX1, USP4, DAG1, NKIRAS1 promoter regions genes methylation status was used methyl sensitive restriction analyses with 2 methyl sensitive endonuclaeses HpaII and HhaI with subsequent polymerase chain reaction. Results. A statistically significant high frequency of RASSF1A, SEMA3B, RARß2, and MGMT genes methylation in epithelial breast tumors compared with histologically normal tissue from the same patients was shown. Significant correlation of RARß2 and MGMT genes methylation frequency considering the different clinical and morphological characteristics of the malignant process was revealed. The statistically significant relationship between methylation of RASSF1A, RARß2 and MGMT genes and patient survival is shown for the first time. Conclusion. The findings of epigenetic changes in the luminal BC supplement the “molecular picture” of this cancer and contribute to an understanding of its pathogenesis. The revealed features of investigated genes methylation can find clinical application for the development of modern approaches to prognosis, prevention and choice of tactics for treatment of BC in females of the Moscow region.


Author(s):  
Sima SHAHROKHZADEH ◽  
Azam SOLEIMANI ◽  
Dor-Mohammad KORDI-TAMANDANI ◽  
Mohammad Hossein SANGTARASH ◽  
Omid NEJATI ◽  
...  

Background: Vesicoureteral reflux (VUR) disease is the most common type of urinary tract anomalies in children. Genetic risk factors may be associated with the etiology of VUR. The role of the Glutathione S-transferases (GSTs) as multifunctional enzymes is cellular oxidative stress handling. This is the first study aimed at evaluating the relative risk of GSTP1, GSTM1, and GSTT1 polymorphisms in VUR susceptibility in children and provides new important insights into the genetics of affected children. Methods: The study was done in 2013 in Sistan and Baluchestan University, eastern Iran. Genotyping of three GSTP1, GSTM1, and GSTT1 genes were determined using the multiplex polymerase chain reaction assay in 216 reactions for 72 VUR children and 312 reactions for 104 healthy controls. Results: The presence of GSTT1 deletion was associated with high risk of VUR in children, whereas GSTP1 and GSTM1 genotypes did not show the same effect. Furthermore, the combination of GSTT1/GSTM1 and GSTT1/ GSTP1 genotypes showed a significant influence on lower risk of VUR in children. Conclusion: Deletion of GSTT1 functional gene is a genetic risk factor causing VUR in children. Interestingly, the combination of GSTM1 and GSTP1 null genotypes with GSTT1 has shown a protective role against risk of GSTT1 deletion.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Anahita Rahmani ◽  
Danial Kheradmand ◽  
Peyman Keyhanvar ◽  
Alireza Shoae-Hassani ◽  
Amir Darbandi-Azar

Fluoxetine (FLX) is a selective serotonin reuptake inhibitor (SSRI). Its action is possibly through an increase in neural cell survival. The mechanism of improved survival rate of neurons by FLX may relate to the overexpression of some kinases such as Akt protein. Akt1 (a serine/threonine kinase) plays a key role in the modulation of cell proliferation and survival. Our study evaluated the effects of FLX on mesenchymal stem cell (MSC) fate and Akt1 phosphorylation levels in MSCs. Evaluation tests included reverse transcriptase polymerase chain reaction, western blot, and immunocytochemistry assays. Nestin, MAP-2, andβ-tubulin were detected after neurogenesis as neural markers. TenμM of FLX upregulated phosphorylation of Akt1 protein in induced hEnSC significantly. Also FLX did increase viability of these MSCs. Continuous FLX treatment after neurogenesis elevated the survival rate of differentiated neural cells probably by enhanced induction of Akt1 phosphorylation. This study addresses a novel role of FLX in neurogenesis and differentiated neural cell survival that may contribute to explaining the therapeutic action of fluoxetine in regenerative pharmacology.


Author(s):  
B.S. Pershin ◽  
◽  
A.A. Maschan ◽  
V.Y. Makhmutov ◽  
M.A. Ilushina ◽  
...  

Purpose. To study the possibilities of a new method of CMRR treatment in the prevention of irreversible blindness. Material and methods. 74 patients with cytomegalovirus retinitis, frolicking after hematopoietic stem cell transplantation. The first group (9 people, 15 eyes) consisted of children, whose treatment was carried out under ophthalmoscopic control. The second group (65 people, 114 eyes) consisted of children in whom the control of the effectiveness of treatment was carried out using PCR of aqueous humor in real time. Results. In the first group, retinal detachment was diagnosed in three out of fifteen eyes, accounting for 20%. In the second group, the incidence of retinal detachment was 3.5% of 114 eyes. Among patients receiving treatment under ophthalmoscopic control, CMRR relapses were detected in 5 cases, which amounted to 33.3%. In children, whose treatment was controlled by intraocular fluid PCR, relapses were diagnosed in 22 cases, which amounted to 19.29%. Conclusions. Intravitreal administration of antiviral drugs under the control of polymerase chain reaction is a more effective method of treating cytomegalovirus retinitis than intravitreal administration under ophthalmoscopic control. Key words: cytomegalovirus retinitis, intraocular fluid polymerase chain reaction.


Sign in / Sign up

Export Citation Format

Share Document