scholarly journals Neurogenesis and Increase in Differentiated Neural Cell Survival via Phosphorylation of Akt1 after Fluoxetine Treatment of Stem Cells

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Anahita Rahmani ◽  
Danial Kheradmand ◽  
Peyman Keyhanvar ◽  
Alireza Shoae-Hassani ◽  
Amir Darbandi-Azar

Fluoxetine (FLX) is a selective serotonin reuptake inhibitor (SSRI). Its action is possibly through an increase in neural cell survival. The mechanism of improved survival rate of neurons by FLX may relate to the overexpression of some kinases such as Akt protein. Akt1 (a serine/threonine kinase) plays a key role in the modulation of cell proliferation and survival. Our study evaluated the effects of FLX on mesenchymal stem cell (MSC) fate and Akt1 phosphorylation levels in MSCs. Evaluation tests included reverse transcriptase polymerase chain reaction, western blot, and immunocytochemistry assays. Nestin, MAP-2, andβ-tubulin were detected after neurogenesis as neural markers. TenμM of FLX upregulated phosphorylation of Akt1 protein in induced hEnSC significantly. Also FLX did increase viability of these MSCs. Continuous FLX treatment after neurogenesis elevated the survival rate of differentiated neural cells probably by enhanced induction of Akt1 phosphorylation. This study addresses a novel role of FLX in neurogenesis and differentiated neural cell survival that may contribute to explaining the therapeutic action of fluoxetine in regenerative pharmacology.

1997 ◽  
Vol 45 (1) ◽  
pp. 107-118 ◽  
Author(s):  
André Nadeau ◽  
Gilles Grondin ◽  
Richard Blouin

ZPK is a recently described protein serine/threonine kinase that has been originally identified from a human teratocarcinoma cell line by the polymerase chain reaction and whose function in signal transduction has not yet been elucidated. To investigate the potential role of this protein kinase in developmental processes, we have analyzed the spatial and temporal patterns of expression of the ZPK gene in mouse embryos of different gestational ages. Northern blot analysis revealed a single mRNA species of about 3.5 KB from Day 11 of gestation onwards. In situ hybridization studies demonstrated strong expression of ZPK mRNA in brain and in a variety of embryonic organs that rely on epithelio-mesenchymal interactions for their development, including skin, intestine, pancreas, and kidney. In these tissues, the ZPK mRNA was localized primarily in areas composed of specific types of differentiating cells, and this expression appeared to be upregulated at a time concomitant with the onset of terminal differentiation. Taken together, these observations raise the possibility that the ZPK gene product is involved in the establishment and/or maintenance of a fully cytodifferentiated state in a variety of cell lineages.


Author(s):  
Shu Li ◽  
Jinfeng Du ◽  
Haina Gan ◽  
Jinwei Chen ◽  
Yang Zhou ◽  
...  

IntroductionResveratrol, a polyphenol extracted from many plant species, has emerged as a promising pro-apoptotic agent in various cancer cells. However, the role of resveratrol in cell proliferation and apoptosis of fibroblast-like synoviocytes in rheumatoid arthritis (RA-FLS) is not fully understood. The study was aimed at elucidating the role of resveratrol in cell proliferation and apoptosis of RA-FLS and the underlying molecular mechanism.Material and methodsCultured RA-FLSs were subjected to tumour necrosis factor  (TNF-). The cell proliferation was measured by Cell Counting Kit-8 assay. Cell apoptosis and cell cycle of RA-FLSs were determined by flow cytometry. The levels of apoptosis or autophagy or cell cycle-related protein were detected by immunoblot analysis.ResultsIn our study, we confirmed that resveratrol reversed TNF- mediated cell proliferation in RA-FLS. Meanwhile, resveratrol blocked cells at the G2/M stage and reduced the ratio of S phase cells through upregulation of p53 and consequently led to apoptotic cell death. Quite interestingly, we found that resveratrol reversed TNF--induced autophagy. Inhibition of autophagy by resveratrol or autophagy inhibitor or Beclin-1 siRNA suppressed TNF- mediated cell survival and promoted cell apoptosis. However, the autophagy inducer rapamycin (RAPA) reversed the effect of resveratrol on autophagy and cell proliferation. Mechanistic studies revealed that resveratrol inhibited the activation of the phosphoinositide 3-kinases/serine-threonine kinase (PI3K/AKT) pathway. Inhibition of PI3K/AKT pathway by inhibitor LY294002 or resveratrol increased the expression of p53 and decreased the expression of cycle protein (cyclin B1), which further led to block cells in the G2/M arrest.ConclusionsOur preliminary study indicated that resveratrol may suppress RA-FLS cell survival and promote apoptosis at least partly through regulation of autophagy and the AKT-p53 axis.


Author(s):  
Amelia U. Schirmer ◽  
Lucy M. Driver ◽  
Megan T. Zhao ◽  
Carrow I. Wells ◽  
Julie E. Pickett ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Raquel Weber ◽  
Ana Paula Santin Bertoni ◽  
Laura Walter Bessestil ◽  
Ilma Simoni Brum ◽  
Tania Weber Furlanetto

Goiter is more common in women, suggesting that estrogen could be involved in its physiopathology. The presence of classical estrogen receptors (ERαand ERβ) has been described in thyroid tissue, suggesting a direct effect of estrogen on the gland. A nonclassic estrogen receptor, the G-protein-coupled estrogen receptor (GPER1), has been described recently in several tissues. However, in goiter, the presence of this receptor has not been studied yet. We investigated GPER1 gene and protein expressions in normal thyroid and goiter using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot, respectively. In normal thyroid (n=16) and goiter (n=19), GPER1 gene was expressed in all samples, while GPER1 protein was expressed in all samples of normal thyroid (n=15) but in only 72% of goiter samples (n=13). When comparing GPER1 gene and protein levels in both conditions, gene expression and protein levels were higher in normal thyroid than in goiter, suggesting a role of this receptor in this condition. Further studies are needed to elucidate the role of GPER1 in normal thyroid and goiter.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Ming Liu ◽  
Zikun Xie ◽  
Guang Sun ◽  
Liujun Chen ◽  
Dake Qi ◽  
...  

Abstract Background Osteoarthritis (OA) is the most prevalent form of arthritis and the major cause of disability and overall diminution of quality of life in the elderly population. Currently there is no cure for OA, partly due to the large gaps in our understanding of its underlying molecular and cellular mechanisms. Macrophage migration inhibitory factor (MIF) is a procytokine that mediates pleiotropic inflammatory effects in inflammatory diseases such as rheumatoid arthritis (RA) and ankylosing spondylitis (AS). However, data on the role of MIF in OA is limited with conflicting results. We undertook this study to investigate the role of MIF in OA by examining MIF genotype, mRNA expression, and protein levels in the Newfoundland Osteoarthritis Study. Methods One hundred nineteen end-stage knee/hip OA patients, 16 RA patients, and 113 healthy controls were included in the study. Two polymorphisms in the MIF gene, rs755622, and -794 CATT5-8, were genotyped using polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) and PCR followed by automated capillary electrophoresis, respectively. MIF mRNA levels in articular cartilage and subchondral bone were measured by quantitative polymerase chain reaction. Plasma concentrations of MIF, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) were measured by enzyme-linked immunosorbent assay. Results rs755622 and -794 CATT5-8 genotypes were not associated with MIF mRNA or protein levels or OA (all p ≥ 0.19). MIF mRNA level in cartilage was lower in OA patients than in controls (p = 0.028) and RA patients (p = 0.004), while the levels in bone were comparable between OA patients and controls (p = 0.165). MIF protein level in plasma was lower in OA patients than in controls (p = 3.01 × 10−10), while the levels of TNF-α, IL-6 and IL-1β in plasma were all significantly higher in OA patients than in controls (all p ≤ 0.0007). Multivariable logistic regression showed lower MIF and higher IL-1β protein levels in plasma were independently associated with OA (OR per SD increase = 0.10 and 8.08; 95% CI = 0.04–0.19 and 4.42–16.82, respectively), but TNF-α and IL-6 became non-significant. Conclusions Reduced MIF mRNA and protein expression in OA patients suggested MIF might have a protective role in OA and could serve as a biomarker to differentiate OA from other joint disorders.


2018 ◽  
Vol 16 ◽  
pp. 205873921876729
Author(s):  
An Wan ◽  
Daodong Liu

Osteoporosis is a chronic multifactorial disease characterized by deterioration of bone mass and is vulnerable to bone fracture. Plasminogen activator inhibitor-1 (PAI-1) is an important molecule for maintenance of optimum bone mass. Several single-nucleotide polymorphisms (SNPs) in PAI-1 have been reported to alter PAI-1 expression and/or the translational level. In this report, we explored the possible role of common PAI-1 gene polymorphisms on predisposition to osteoporosis in a Chinese cohort. A total of 364 post-menopausal Chinese women diagnosed of having osteoporosis and 350 healthy females hailing from similar areas were enrolled in this study. Five common SNPs (−844G > A, −6754G/5G, +43G > A, +9785G > A and +11053T > G) were genotyped by polymerase chain reaction (PCR) followed by restriction fragment length polymorphism (RFLP). Relative expression of PAI-1 mRNA and plasma PAI-1 levels were quantified by reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Prevalence of homozygous mutant (5G/5G) and minor allele (5G) of PAI-1 (−675 4G/5G) polymorphism was significantly more frequent in patients than in healthy controls (5G/5G: P < 0.0001, odds ratio (OR) = 3.18; 5G: P < 0.0001, OR = 1.65). Both plasma PAI-1 and relative mRNA expression levels were significantly lower in patients compared to healthy controls. Interestingly, the quantity of plasma PAI-1 and mRNA expression was correlated with PAI-1 (−675 4G/5G) polymorphism: subjects with 4G/4G genotype had elevated PAI-1 in comparison to homozygous mutant, and displayed lower quantity of PAI-1 protein and mRNA values. PAI-1 (−675 4G/5G) mutant is associated with susceptibility to development of osteoporosis in post-menopausal Chinese women. Furthermore, this variant in the promoter region alters plasma protein levels and relative expression of PAI-1.


Sign in / Sign up

Export Citation Format

Share Document