scholarly journals Feasibility analysis of semiconductor voltage nanosensors for neuronal membrane potential sensing

2019 ◽  
Author(s):  
Anastasia Ludwig ◽  
Pablo Serna ◽  
Lion Morgenstein ◽  
Gaoling Yang ◽  
Omri Bar-Elli ◽  
...  

AbstractIn the last decade, optical imaging methods have significantly improved our understanding of the information processing principles in the brain. Although many promising tools have been designed, sensors of membrane potential are lagging behind the rest. Semiconductor nanoparticles are an attractive alternative to classical voltage indicators, such as voltage-sensitive dyes and proteins. Such nanoparticles exhibit high sensitivity to external electric fields via the quantum-confined Stark effect. Here we report the development of lipid-coated semiconductor voltage-sensitive nanorods (vsNRs) that self-insert into the neuronal membrane. We describe a workflow to detect and process the photoluminescent signal of vsNRs after wide-field time-lapse recordings. We also present data indicating that vsNRs are feasible for sensing membrane potential in neurons at a single-particle level. This shows the potential of vsNRs for detection of neuronal activity with unprecedentedly high spatial and temporal resolution.

Author(s):  
R H. Selinfreund ◽  
A. H. Cornell-Bell

Cellular electrophysiological properties are normally monitored by standard patch clamp techniques . The combination of membrane potential dyes with time-lapse laser confocal microscopy provides a more direct, least destructive rapid method for monitoring changes in neuronal electrical activity. Using membrane potential dyes we found that spontaneous action potential firing can be detected using time-lapse confocal microscopy. Initially, patch clamp recording techniques were used to verify spontaneous electrical activity in GH4\C1 pituitary cells. It was found that serum depleted cells had reduced spontaneous electrical activity. Brief exposure to the serum derived growth factor, IGF-1, reconstituted electrical activity. We have examined the possibility of developing a rapid fluorescent assay to measure neuronal activity using membrane potential dyes. This neuronal regeneration assay has been adapted to run on a confocal microscope. Quantitative fluorescence is then used to measure a compounds ability to regenerate neuronal firing.The membrane potential dye di-8-ANEPPS was selected for these experiments. Di-8- ANEPPS is internalized slowly, has a high signal to noise ratio (40:1), has a linear fluorescent response to change in voltage.


2016 ◽  
Author(s):  
Kyoungwon Park ◽  
Yung Kuo ◽  
Volodymyr Shvadchak ◽  
Antonino Ingargiola ◽  
Xinghong Dai ◽  
...  

AbstractWe develop membrane voltage nanosensors that are based on inorganic semiconductor nanoparticles. These voltage nanosensors are designed to self-insert into the cell membrane and optically record the membrane potential via the quantum confined Stark effect, with single-particle sensitivity. We present here the approach, design rules, and feasibility proves for this concept. With further improvements, semiconductor nanoparticles could potentially be used to study signals from many neurons in a large field-of-view over a long duration. Moreover, they could potentially report and resolve voltage signals on the nanoscale.


2021 ◽  
Vol 120 (3) ◽  
pp. 223a
Author(s):  
Flavia Mazzarda ◽  
Esin B. Sozer ◽  
Julia L. Pittaluga ◽  
Claudia Muratori ◽  
P. Thomas Vernier

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S659-S660
Author(s):  
Brett Baker

Abstract Background The rise in resistance to existing antimicrobials has prompted a need for the development of novel antibiotics. Microbion has identified a novel compound, pravibismane, with potent broad spectrum anti-infective and anti-biofilm activity. Methods Here we used a variety of assays, including Bacterial Cytological Profiling (BCP), to analyze pravibismane in E.coli to gain insight into its likely mechanism of action (MOA). The BCP profile of pravibismane suggested it rapidly shut down cell growth, potentially by turning off cellular gene or protein expression. This was confirmed using a plasmid based GFP induction assay in E.coli tolC that showed pravibismane strongly reduced expression of GFP. The kinetics, reversibility and MOA of pravibismane was further characterized by using time-lapse microscopy, wash out experiments and measurements of both membrane potential and relative intracellular ATP levels. Results We found that pravibismane acts rapidly (within 30 mins) to completely halt cell growth rather than causing immediate cell lysis such as that observed with non-specific cell damaging agents bleach or detergent. Inhibitor wash out experiments in which cells were exposed to pravibismane for 2 hours, washed to remove the compound, and then observed using time-lapse microscopy revealed that the effect of pravibismane is reversible and that cells recovered 8-12 hrs after removing the compound. Wash out experiments with an E.coli tolC strain carrying a plasmid with an IPTG inducible GFP demonstrated that transcription and translation ultimately resumed in most cells after washout. The bioenergetics of the membrane was measured using DiBAC 4(5), a membrane potential sensitive dye which can enter depolarized cells, which revealed that pravibismane caused depolarization of the membrane within 30 mins of exposure in a concentration dependent manner. Finally, a luciferase assay determined pravibismane reduced ATP levels (resulting in decreased luminescence) within 15 mins of exposure in a concentration dependent manner unlike antibiotic controls that had modest or no effect on luminescence. Conclusion Our results suggest that pravibismane acts rapidly to disrupt cellular bioenergetics, resulting in the immediate cessation of cell growth and protein expression. Disclosures Brett Baker, M.Sc., D.C., Microbion Corporation (Board Member, Employee)


1999 ◽  
Vol 4 (S1) ◽  
pp. 357-362
Author(s):  
C. Wetzel ◽  
T. Takeuchi ◽  
H. Amano ◽  
I. Akasaki

Identification of the electronic band structure in AlInGaN heterostructures is the key issue in high performance light emitter and switching devices. In device-typical GaInN/GaN multiple quantum well samples in a large set of variable composition a clear correspondence of transitions in photo- and electroreflection, as well as photoluminescence is found. The effective band offset across the GaN/GaInN/GaN piezoelectric heterointerface is identified and electric fields from 0.23 - 0.90 MV/cm are directly derived. In the bias voltage dependence a level splitting within the well is observed accompanied by the quantum confined Stark effect. We furthermore find direct correspondence of luminescence bands with reflectance features. This indicates the dominating role of piezoelectric fields in the bandstructure of such typical strained layers.


2019 ◽  
Vol 10 (2) ◽  
pp. 789 ◽  
Author(s):  
Cuong Nguyen ◽  
Hansini Upadhyay ◽  
Michael Murphy ◽  
Gabriel Borja ◽  
Emily J. Rozsahegyi ◽  
...  

2021 ◽  
Author(s):  
Heike Rauer ◽  
Isabella Pagano ◽  
Miguel Mas-Hesse ◽  
Conny Aerts ◽  
Magali Deleuil ◽  
...  

<p>PLATO is an ESA mission dedicated to the study of exoplanets and stars, with a planned launch date in 2026. By performing photometric monitoring of about 250 000 bright stars (m<sub>V</sub> < 13), PLATO will be able to discover and characterise hundreds of exoplanets, including small planets orbiting up to the habitable zone of solar-like stars. PLATO’s precision will also allow for a precise characterisation of the host stars through asteroseismology. These objectives require both a wide field of view and high sensitivity, which are achieved with a payload comprising 24 cameras with partially overlapping fields of view. They are complemented by 2 more cameras optimised for brighter stars that will also be used as fine guidance sensor. The PLATO development phase started after the mission adoption in July 2017. The Mission Preliminary Design Review (PDR) was declared successful in October 2020. The implementation and delivery to ESA of the flight model CCDs for all cameras (4 CCDs per camera) has been completed. Currently the Structural Thermal Model (STM) of the payload optical bench is being manufactured, while the STM of a single camera has already been successfully tested. In parallel, a first engineering model of a complete, fully functional camera is being integrated, to verify its performance under operational conditions, and the qualification models of the different payload units are being built.</p> <p>We will present the status of the PLATO payload implementation in the context of the satellite development. In particular, we will describe the payload manufacturing, integration, and tests that will be reviewed at the Critical Milestone in the second half of 2021. We will also summarise the progress made in the science preparation activities, as well as on the ground segment.</p>


1998 ◽  
Vol 179 ◽  
pp. 89-90
Author(s):  
N.E. Kassim ◽  
D.S. Briggs ◽  
R.S. Foster

The 330 MHz observing system at the VLA is a potentially powerful survey system. It can map fields many degrees in size quickly and at high sensitivity. However imaging characteristics unique to this data pose excessive computational burdens on conventional mapping systems. Hence while data acquisition is quick and efficient, data reduction has been difficult and slow. Here we describe how powerful new scalable processing algorithms have been used to generate the first full resolution 330 MHz images, demonstrating also that lower resolution survey work is now a tractable problem.


Sign in / Sign up

Export Citation Format

Share Document