scholarly journals 1289. Pravibismane is a Potent, Broad Spectrum Anti-Infective Small Molecule that Rapidly Disrupts Bacterial Bioenergetics and Halts Bacterial Growth

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S659-S660
Author(s):  
Brett Baker

Abstract Background The rise in resistance to existing antimicrobials has prompted a need for the development of novel antibiotics. Microbion has identified a novel compound, pravibismane, with potent broad spectrum anti-infective and anti-biofilm activity. Methods Here we used a variety of assays, including Bacterial Cytological Profiling (BCP), to analyze pravibismane in E.coli to gain insight into its likely mechanism of action (MOA). The BCP profile of pravibismane suggested it rapidly shut down cell growth, potentially by turning off cellular gene or protein expression. This was confirmed using a plasmid based GFP induction assay in E.coli tolC that showed pravibismane strongly reduced expression of GFP. The kinetics, reversibility and MOA of pravibismane was further characterized by using time-lapse microscopy, wash out experiments and measurements of both membrane potential and relative intracellular ATP levels. Results We found that pravibismane acts rapidly (within 30 mins) to completely halt cell growth rather than causing immediate cell lysis such as that observed with non-specific cell damaging agents bleach or detergent. Inhibitor wash out experiments in which cells were exposed to pravibismane for 2 hours, washed to remove the compound, and then observed using time-lapse microscopy revealed that the effect of pravibismane is reversible and that cells recovered 8-12 hrs after removing the compound. Wash out experiments with an E.coli tolC strain carrying a plasmid with an IPTG inducible GFP demonstrated that transcription and translation ultimately resumed in most cells after washout. The bioenergetics of the membrane was measured using DiBAC 4(5), a membrane potential sensitive dye which can enter depolarized cells, which revealed that pravibismane caused depolarization of the membrane within 30 mins of exposure in a concentration dependent manner. Finally, a luciferase assay determined pravibismane reduced ATP levels (resulting in decreased luminescence) within 15 mins of exposure in a concentration dependent manner unlike antibiotic controls that had modest or no effect on luminescence. Conclusion Our results suggest that pravibismane acts rapidly to disrupt cellular bioenergetics, resulting in the immediate cessation of cell growth and protein expression. Disclosures Brett Baker, M.Sc., D.C., Microbion Corporation (Board Member, Employee)

Author(s):  
Hongtao Li ◽  
Peng Chen ◽  
Lei Chen ◽  
Xinning Wang

Background: Nuclear factor kappa B (NF-κB) is usually activated in Wilms tumor (WT) cells and plays a critical role in WT development. Objective: The study purpose was to screen a NF-κB inhibitor from natural product library and explore its effects on WT development. Methods: Luciferase assay was employed to assess the effects of natural chemical son NF-κB activity. CCK-8 assay was conducted to assess cell growth in response to naringenin. WT xenograft model was established to analyze the effect of naringenin in vivo. Quantitative real-time PCR and Western blot were performed to examine the mRNA and protein levels of relative genes, respectively. Results: Naringenin displayed significant inhibitory effect on NF-κB activation in SK-NEP-1 cells. In SK-NEP-1 and G-401 cells, naringenin inhibited p65 phosphorylation. Moreover, naringenin suppressed TNF-α-induced p65 phosphorylation in WT cells. Naringenin inhibited TLR4 expression at both mRNA and protein levels in WT cells. CCK-8 staining showed that naringenin inhibited cell growth of the two above WT cells in dose-and time-dependent manner, whereas Toll-like receptor 4 (TLR4) over expression partially reversed the above phenomena. Besides, naringenin suppressed WT tumor growth in dose-and time-dependent manner in vivo. Western blot found that naringenin inhibited TLR4 expression and p65 phosphorylation in WT xenograft tumors. Conclusion: Naringenin inhibits WT development viasuppressing TLR4/NF-κB signaling


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Prisca Bustamante Alvarez ◽  
Alexander Laskaris ◽  
Alicia A. Goyeneche ◽  
Yunxi Chen ◽  
Carlos M. Telleria ◽  
...  

Abstract Background Uveal melanoma (UM), the most prevalent intraocular tumor in adults, is a highly metastatic and drug resistant lesion. Recent studies have demonstrated cytotoxic and anti-metastatic effects of the antiprogestin and antiglucocorticoid mifepristone (MF) in vitro and in clinical trials involving meningioma, colon, breast, and ovarian cancers. Drug repurposing is a cost-effective approach to bring approved drugs with good safety profiles to the clinic. This current study assessed the cytotoxic effects of MF in human UM cell lines of different genetic backgrounds. Methods The effects of incremental concentrations of MF (0, 5, 10, 20, or 40 μM) on a panel of human UM primary (MEL270, 92.1, MP41, and MP46) and metastatic (OMM2.5) cells were evaluated. Cells were incubated with MF for up to 72 h before subsequent assays were conducted. Cellular functionality and viability were assessed by Cell Counting Kit-8, trypan blue exclusion assay, and quantitative label-free IncuCyte live-cell analysis. Cell death was analyzed by binding of Annexin V-FITC and/or PI, caspase-3/7 activity, and DNA fragmentation. Additionally, the release of cell-free DNA was assessed by droplet digital PCR, while the expression of progesterone and glucocorticoid receptors was determined by quantitative real-time reverse transcriptase PCR. Results MF treatment reduced cellular proliferation and viability of all UM cell lines studied in a concentration-dependent manner. A reduction in cell growth was observed at lower concentrations of MF, with evidence of cell death at higher concentrations. A significant increase in Annexin V-FITC and PI double positive cells, caspase-3/7 activity, DNA fragmentation, and cell-free DNA release suggests potent cytotoxicity of MF. None of the tested human UM cells expressed the classical progesterone receptor in the absence or presence of MF treatment, suggesting a mechanism independent of the modulation of the cognate nuclear progesterone receptor. In turn, all cells expressed non-classical progesterone receptors and the glucocorticoid receptor. Conclusion This study demonstrates that MF impedes the proliferation of UM cells in a concentration-dependent manner. We report that MF treatment at lower concentrations results in cell growth arrest, while increasing the concentration leads to lethality. MF, which has a good safety profile, could be a reliable adjuvant of a repurposing therapy against UM.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Tuerdi Subati ◽  
Zhenjiang Yang ◽  
Isis L Christopher ◽  
Joseph C Van Amburg ◽  
Matthew B Murphy ◽  
...  

Background: Hypertension is one of the most common risk factors for atrial fibrillation (AF), although the precise cellular and molecular mechanism(s) by which hypertension leads to AF are not well understood. Isolevuglandins (IsoLGs) are highly reactive dicarbonyl products of lipid peroxidation responsible for a major component of oxidative stress-related injury. In a mouse model of hypertension, we recently demonstrated that IsoLGs are elevated in hypertensive mouse atria and that an IsoLG scavenger reduced both IsoLG burden and AF susceptibility. Hypothesis: In this study, we hypothesized that IsoLGs can promote AF by inducing proarrhythmic metabolic and electrophysiologic (EP) changes in atrial cardiomyocytes. Methods and Results: Using standard patch clamp methods, we found significant changes in action potential properties of isolated mouse atrial cardiomyocytes exposed to IsoLGs (1μM, n=15 cells), including elevation of resting membrane potential, shortening of APD and reduction of V max . Acute IsoLG treatment led to a reduction of intracellular ATP production in atrial HL-1 cardiomyocytes, as measured by using a luminescence assay. Employing TMRM and Mitotracker Green staining for confocal and high-throughput screening (HTS) live-cell imaging assays, we also found that IsoLGs decreased mitochondrial membrane potential (compared to control, TMRM fluorescence decreased by 23%, 28%, 36% and 42%, respectively, when exposed to 0.01, 0.1, 0.5 and 1μM concentrations of IsoLG) accompanied by increased apoptosis (Cell Event Caspase-3/7 Green Detection Reagent) in a concentration-dependent manner, suggesting a prolonged mitochondrial transition pore opening. Moreover, cell metabolism assays performed using Agilent’s Seahorse XF96 extracellular flux analyzer revealed that IsoLGs exert a concentration dependent decrease in basal oxygen consumption rate and ATP production in HL-1 atrial cardiomyocytes. Conclusion: Together, these findings indicate that IsoLGs promote proarrhythmic EP and mitochondrial effects in atrial cells and thus may provide a novel therapeutic target for AF.


Author(s):  
Mohammad Reza Shiran ◽  
Elham Mahmoudian ◽  
Abolghasem Ajami ◽  
Seyed Mostafa Hosseini ◽  
Ayjamal Khojasteh ◽  
...  

Abstract Objectives Angiogenesis is the most important challenge in breast cancer treatment. Recently, scientists become interesting in rare natural products and intensive researches was performed to identify their pharmacological profile. Auraptene shows helpful effects such as cancer chemo-preventive, anti-inflammatory, anti-oxidant, immuno-modulatory. In this regard, we investigated the anti-angiogenesis effect of Auraptene in in-vitro and in-vivo model of breast cancer. Methods In this study, 4T, MDA-MB-231 and HUVEC cell lines were used. The proliferation study was done by MTT assay. For tube formation assay, 250 matrigel, 1 × 104 HUVEC treated with Auraptene, 20 ng/mL EGF, 20 ng/mL bFGF and 20 ng/mL VEGF were used. Gene expression of important gene related to angiogenesis in animal model of breast cancer was investigated by Real-time PCR. Protein expression of VCAM-1 and TNFR-1 gene related to angiogenesis in animal model of breast cancer was investigated by western-blot. Results Auraptene treatment led to reduction in cell viability of MDA-MB-231 in a concentration-dependent manner. Also, we observed change in the number of tubes or branches formed by cells incubated with 40 and 80 μM Auraptene. Auraptene effect the gene expression of important gene related to angiogenesis (VEGF, VEGFR2, COX2, IFNɣ). Moreover, the western blot data exhibited that Auraptene effect the protein expression of VCAM-1 and TNFR-1. Conclusions Overall, this study shows that Auraptene significantly suppressed angiogenesis via down-regulation of VEGF, VEGFR2, VCAM-1, TNFR-1, COX-2 and up-regulation of IFNγ.


2000 ◽  
Vol 278 (2) ◽  
pp. H567-H576 ◽  
Author(s):  
C. Cadorette ◽  
B. Sicotte ◽  
M. Brochu ◽  
J. St-Louis

The contribution of potassium channels [ATP-sensitive potassium (KATP) and high-conductance calcium-activated potassium (BKCa) channels] in the resistance of aortic rings of term pregnant rats to phenylephrine (Phe), arginine vasopressin (AVP), and KCl was investigated. Concentration-response curves to tetraethylammonium (TEA), a nonselective K+ channel inhibitor, were obtained in the absence or presence of KCl. TEA induced by itself concentration-dependent responses only in aortic rings of nonpregnant rats. These responses to TEA could be modulated in both groups of rings by preincubation with different concentrations of KCl. Concentration-response curves to Phe, AVP, and KCl were obtained in the absence or presence of cromakalim or NS-1619 (KATP and BKCa openers, respectively) and glibenclamide or iberiotoxin (KATPand BKCa inhibitors, respectively). Cromakalim significantly inhibited the responses to the three agonists in a concentration-dependent manner in both groups of rats. Alternatively, in the pregnant group of rats, glibenclamide increased the sensitivity to all three agonists. NS-1619 also inhibited the response to all agonists. With AVP and KCl, its effect was greater in aortic rings of pregnant than nonpregnant rats. Finally, iberiotoxin increased the sensitivity to all three agents. This effect was more important in aortic rings of nonpregnant rats and was accompanied by an increase of the maximal response to Phe and AVP. These results suggest that potassium channels are implicated in the control of basal membrane potential and in the blunted responses to these agents during pregnancy.


2020 ◽  
Vol 318 (4) ◽  
pp. C732-C739
Author(s):  
Fangyi Liu ◽  
Xiao Wang ◽  
Hua Geng ◽  
Heng-Fu Bu ◽  
Peng Wang ◽  
...  

Sirtuin 6 (Sirt6) is predominantly expressed in epithelial cells in intestinal crypts. It plays an important role in protecting intestinal epithelial cells against inflammatory injury. Previously, we found that colitis is associated with the downregulation of Sirt6 protein in the intestines. Here, we report that murine interferon-γ (Ifnγ) inhibits Sirt6 protein but not mRNA expression in young adult mouse colonocytes (YAMC, a mouse colonic epithelial cell line) in a dose- and time-dependent manner. Using microRNA array analysis, we showed that Ifnγ induces expression of miR-92b in YAMC cells. With in silico analysis, we found that the Sirt6 3′-untranslated region (UTR) contains a putative binding site for miR-92b. Luciferase assay showed that Ifnγ inhibited Sirt6 3′-UTR activity and this effect was mimicked by miR-92b via directly targeting the miR-92b seed site in the 3′-UTR of Sirt6 mRNA. Furthermore, Western blot demonstrated that miR-92b downregulated Sirt6 protein expression in YAMC cells. Blocking miR-92b with a specific inhibitor attenuated the inhibitory effect of Ifnγ on Sirt6 protein expression in the cells. Collectively, our data suggest that Ifnγ inhibits Sirt6 protein expression in intestinal epithelial cells via a miR-92b-mediated mechanism. miR-92b may be a novel therapeutic target for rescuing Sirt6 protein levels in intestinal epithelial cells, thereby protecting against intestinal mucosal injury caused by inflammation.


2020 ◽  
Vol 21 (18) ◽  
pp. 6706
Author(s):  
Geon-Hee Kim ◽  
Xue-Quan Fang ◽  
Woo-Jin Lim ◽  
Jooho Park ◽  
Tae-Bong Kang ◽  
...  

Constitutive activation of the β-catenin dependent canonical Wnt signaling pathway, which enhances tumor growth and progression in multiple types of cancer, is commonly observed in melanoma. LEF1 activates β-catenin/TCF4 transcriptional activity, promoting tumor growth and progression. Although several reports have shown that LEF1 is highly expressed in melanoma, the functional role of LEF1 in melanoma growth is not fully understood. While A375, A2058, and G361 melanoma cells exhibit abnormally high LEF1 expression, lung cancer cells express lower LEF1 levels. A luciferase assay-based high throughput screening (HTS) with a natural compound library showed that cinobufagin suppressed β-catenin/TCF4 transcriptional activity by inhibiting LEF1 expression. Cinobufagin decreases LEF1 expression in a dose-dependent manner and Wnt/β-catenin target genes such as Axin-2, cyclin D1, and c-Myc in melanoma cell lines. Cinobufagin sensitively attenuates cell viability and induces apoptosis in LEF1 expressing melanoma cells compared to LEF1-low expressing lung cancer cells. In addition, ectopic LEF1 expression is sufficient to attenuate cinobufagin-induced apoptosis and cell growth retardation in melanoma cells. Thus, we suggest that cinobufagin is a potential anti-melanoma drug that suppresses tumor-promoting Wnt/β-catenin signaling via LEF1 inhibition.


1995 ◽  
Vol 268 (1) ◽  
pp. L47-L55 ◽  
Author(s):  
A. P. Abela ◽  
E. E. Daniel

In canine bronchi bathed in 10(-6) M indomethacin (IDM), prostaglandin (PG) E2 inhibited electrical field stimulation (EFS)- and acetylcholine (ACh)-mediated contractions and excitatory junction potentials (EJP) in a concentration-dependent manner without altering the resting membrane potential. EFS-induced EJPs were abolished at 10(-7) M PGE2, which shifted responses to ACh 10-fold rightward. Thus PGE2 predominantly inhibited the release of ACh and secondarily decreased smooth muscle response to ACh. U-46619, an analogue of thromboxane A2 (TxA2), initiated tetrodotoxin- and atropine-insensitive contractions in a concentration-dependent manner. U-46619 (10(-9) M) did not alter significantly EFS- or ACh-stimulated contractions and potentiated EFS amplitude of EJPs without depolarizing muscle cells. Either prejunctional activation of ACh release by TxA2 or postjunctional potentiation of the response to ACh can explain these findings. U-46619 (<or = 10(-8) M) depolarized the membrane potential, initiating oscillations accompanied by a large contraction. Addition of 10(-8) M nitrendipine, but not tetraethylammonium (25 mM), blocked the oscillations selectively. Other prostanoids (PGD2, PGI2, and PGF2 alpha) had no significant effects on canine bronchi. In the absence of IDM, PGE2 accumulated, EFS contractions decreased with time, and EJPs disappeared. We conclude that in canine bronchi PGE2 predominantly inhibits ACh release and endogenous PGE2 acts similarly, whereas TxA2 excites, probably at postjunctional sites.


1993 ◽  
Vol 70 (2) ◽  
pp. 758-764 ◽  
Author(s):  
E. Garcia ◽  
A. Benitez ◽  
C. G. Onetti

1. An electrophysiological study of the D-glucose sensitivity of X-organ (XO) neurosecretory cell bodies in crayfish was carried out with the use of microelectrodes, perforated, and cell-attached patch-clamp techniques. 2. Glucose depolarizes the membrane potential of XO cells in a concentration-dependent manner. 3. Depolarization produced by glucose initiates a change in the pattern of electrical activity. Silent cells began to discharge action potentials. When bursting cells are depolarized by glucose, their action potentials are no longer grouped in bursts or disappear entirely. 4. Although the membrane potential returns to its initial value after removing glucose from the bath, discharge patterns of the cells may remain different. This suggests that besides the depolarizing effect, once the cells have been exposed to glucose, the sugar switches on a process that is maintained for a long time. 5. Glucose produced a reduction of membrane steady-state conductance, and a shift of reversal potential of membrane currents to a more positive value. 6. Depolarization induced by D-glucose appears to be related with a closure of potassium channels. 7. Glucose effect was thought to be generated by a product of metabolism that would act as intracellular mediator.


1984 ◽  
Vol 247 (5) ◽  
pp. C321-C326 ◽  
Author(s):  
M. M. Walsh-Reitz ◽  
H. N. Aithal ◽  
F. G. Toback

Accelerated kidney growth and increased tissue Na content have been observed in rats fed a K-deficient diet. These observations suggest that enhanced Na influx could mediate renal growth, a hypothesis that was tested in cultures of kidney epithelial cells of the BSC-1 line. Reduction of the K concentration in the culture medium from 5.4 to 3.2 mM augmented cell growth and induced a transient increase in the cellular content of Na and a decrease in that of K. That low-K-induced growth was Na dependent was shown by decreasing the medium Na concentration from 155 to 150 mM, which abolished the increases in both growth and cell Na content in a concentration-dependent manner. The stimulation of glyceraldehyde-3-phosphate dehydrogenase (G3PD) activity that occurs in cells exposed to low-K medium for 1 h was similarly prevented by decreasing the medium Na concentration. Thus decreased availability of extracellular Na prevented the increase in cell Na content, stimulation of G3PD activity, and accelerated growth induced by low-K medium. The hypothesis was also tested by adding vasopressin to cultures of BSC-1 cells exposed to low-K medium; the hormone prevented the increments in cell Na content, G3PD activity, and growth to the same extent as did decreased availability of extracellular Na. These results are consistent with the interpretation that transient accumulation of Na is a critical determinant of the initiation of kidney epithelial cell growth.


Sign in / Sign up

Export Citation Format

Share Document