scholarly journals Paracrine and autocrine R-spondin signalling is essential for the maintenance and differentiation of renal stem cells

2019 ◽  
Author(s):  
V.P.I. Vidal ◽  
E. Gregoire ◽  
E. Szenker-Ravi ◽  
M. Leushacke ◽  
B. Reversade ◽  
...  

AbstractDuring kidney development, WNT/β-catenin signalling has to be tightly controlled to ensure proliferation and differentiation of renal stem cells. Here we show that the two signalling molecules RSPO1 and RSPO3 act in a functionally redundant manner to permit WNT/β-catenin signalling and their genetic deletion leads to a rapid decline of renal progenitors. By contrast, tissue specific deletion in cap mesenchymal cells abolishes mesenchyme to epithelial transition (MET) that is linked to a loss of Bmp7 expression, absence of SMAD1/5 phosphorylation and a concomitant failure to activate Lef1, Fgf8 and Wnt4, thus explaining the observed phenotype on a molecular level. Surprisingly, the full knockout of LGR4/5/6, the cognate receptors of R-spondins, only mildly affects progenitor numbers, but does not interfere with MET. Taken together our data demonstrate key roles for R-spondins in permitting stem cell maintenance and differentiation and reveal Lgr-dependent and independent functions for these ligands during kidney formation.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Valerie PI Vidal ◽  
Fariba Jian-Motamedi ◽  
Samah Rekima ◽  
Elodie P Gregoire ◽  
Emmanuelle Szenker-Ravi ◽  
...  

During kidney development, WNT/β-catenin signalling has to be tightly controlled to ensure proliferation and differentiation of nephron progenitor cells. Here, we show in mice that the signalling molecules RSPO1 and RSPO3 act in a functionally redundant manner to permit WNT/β-catenin signalling and their genetic deletion leads to a rapid decline of nephron progenitors. By contrast, tissue specific deletion in cap mesenchymal cells abolishes mesenchyme to epithelial transition (MET) that is linked to a loss of Bmp7 expression, absence of SMAD1/5 phosphorylation and a concomitant failure to activate Lef1, Fgf8 and Wnt4, thus explaining the observed phenotype on a molecular level. Surprisingly, the full knockout of LGR4/5/6, the cognate receptors of R-spondins, only mildly affects progenitor numbers, but does not interfere with MET. Taken together our data demonstrate key roles for R-spondins in permitting stem cell maintenance and differentiation and reveal Lgr-dependent and independent functions for these ligands during kidney formation.


2021 ◽  
pp. ASN.2021081073
Author(s):  
Melissa Little ◽  
Benjamin Humphreys

Fifteen years ago, this journal published a review outlining future options for regenerating the kidney. At that time, stem cell populations were being identified in multiple tissues, the concept of stem cell recruitment to a site of injury was of great interest, and the possibility of postnatal renal stem cells was growing in momentum. Since that time, we have seen the advent of human induced pluripotent stem cells, substantial advances in our capacity to both sequence and edit the genome, global and spatial transcriptional analysis down to the single-cell level, and a pandemic that has challenged our delivery of health care to all. This article will look back over this period of time to see how our view of kidney development, disease, repair, and regeneration has changed and envision a future for kidney regeneration and repair over the next 15 years.


2021 ◽  
Vol 16 (1) ◽  
pp. 3-13
Author(s):  
Lang Wang ◽  
Yong Li ◽  
Maorui Zhang ◽  
Kui Huang ◽  
Shuanglin Peng ◽  
...  

Adipose-derived stem cells are adult stem cells which are easy to obtain and multi-potent. Stem-cell therapy has become a promising new treatment for many diseases, and plays an increasingly important role in the field of tissue repair, regeneration and reconstruction. The physicochemical properties of the extracellular microenvironment contribute to the regulation of the fate of stem cells. Nanomaterials have stable particle size, large specific surface area and good biocompatibility, which has led them being recognized as having broad application prospects in the field of biomedicine. In this paper, we review recent developments of nanomaterials in adipose-derived stem cell research. Taken together, the current literature indicates that nanomaterials can regulate the proliferation and differentiation of adipose-derived stem cells. However, the properties and regulatory effects of nanomaterials can vary widely depending on their composition. This review aims to provide a comprehensive guide for future stem-cell research on the use of nanomaterials.


2015 ◽  
Vol 05 (999) ◽  
pp. 1-1
Author(s):  
Abu Bakar Mohd Hilmi ◽  
Mohd Noor Norhayati ◽  
Ahmad Sukari Halim ◽  
Chin Keong Lim ◽  
Zulkifli Mustafa ◽  
...  

Impact ◽  
2018 ◽  
Vol 2018 (3) ◽  
pp. 26-28
Author(s):  
Jonathan Dawson ◽  
Richard Oreffo

Gels made from clay could provide an environment able to stimulate stem-cells due to their ability to bind biological molecules. That molecules stick to clay has been known by scientists since the 1960s. Doctors observed that absorption into the blood stream of certain drugs was severely reduced when patients were also receiving clay-based antacid or anti-diarrhoeal treatments. This curious phenomenon was realized to be due to binding of the drugs by clay particles. This interaction is now routinely harnessed in the design of tablets to carefully control the release and action of a drug. Dr Dawson now proposes to use this property of clay to create micro-environments that could stimulate stem cells to regenerate damaged tissues such as bone, cartilage or skin. The rich electrostatic properties of nano (1 millionth of a millimetre) -scale clay particles which mediate these interactions could allow two hurdles facing the development of stem-cell based regenerative therapies to be overcome simultaneously. The first challenge - to deliver and hold stem cells at the right location in the body - is met by the ability of clays to self-organise into gels via the electrostatic interactions of the particles with each other. Cells mixed with a low concentration (less than 4%) of clay particles can be injected into the body and held in the right place by the gel, eliminating, in many situations, the need for surgery. Clay particles can also interact with large structural molecules (polymers) which are frequently used in the development of materials (or 'scaffolds'), designed to host stem cells. These interactions can greatly improve the strength of such structures and could be applied to preserve their stability at the site of injury until regeneration is complete. While several gels and scaffold materials have been designed to deliver and hold stem cells at the site of regeneration, the ability of clay nanoparticles to overcome a second critical hurdle facing stem-cell therapy is what makes them especially exciting. Essential to directing the activity of stem-cells is the carefully controlled provision of key biological signalling molecules. However, the open structures of conventional scaffolds or gels, while essential for the diffusion of nutrients to the cells, means their ability to hold the signalling molecules in the same location as the cells is limited. The ability of clay nano-particles to bind biological molecules presents a unique opportunity to create local environments at a site of injury or disease that can stimulate and control stem-cell driven repair. Dr Dawson's early studies investigated the ability of clay gels to stimulate the growth of new blood vessels by incorporating a key molecular signal that stimulates this process, vascular endothelial growth factor (VEGF). In a manner reminiscent of the observations made in the 60s, Dr Dawson and colleagues observed that adding a drop of clay gel to a solution containing VEGF caused, after a few hours, the disappearance of VEGF from the solution as it became bound to the gel. When placed in an experimental injury model, the gel-bound VEGF stimulated a cluster of new blood vessels to form. These exciting results indicate the potential of clay nanoparticles to create tailor-made micro-environments to foster stem cell regeneration. Dr Dawson is developing this approach as a means of first exploring the biological signals necessary to successfully control stem cell behaviour for regeneration and then, using the same approach, to provide stem cells with these signals to stimulate regeneration in the body. The project will seek to test this approach to regenerate bone lost to cancer or hip replacement failure. If successful the same technology may be applied to harness stem cells for the treatment of a whole host of different scenarios, from burn victims to those suffering with diabetes or Parkinson's.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 927
Author(s):  
Ki-Taek Lim ◽  
Dinesh-K. Patel ◽  
Sayan-Deb Dutta ◽  
Keya Ganguly

Human mesenchymal stem cells (hMSCs) have the potential to differentiate into different types of mesodermal tissues. In vitro proliferation and differentiation of hMSCs are necessary for bone regeneration in tissue engineering. The present study aimed to design and develop a fluid flow mechanically-assisted cartridge device to enhance the osteogenic differentiation of hMSCs. We used the fluorescence-activated cell-sorting method to analyze the multipotent properties of hMSCs and found that the cultured cells retained their stemness potential. We also evaluated the cell viabilities of the cultured cells via water-soluble tetrazolium salt 1 (WST-1) assay under different rates of flow (0.035, 0.21, and 0.35 mL/min) and static conditions and found that the cell growth rate was approximately 12% higher in the 0.035 mL/min flow condition than the other conditions. Moreover, the cultured cells were healthy and adhered properly to the culture substrate. Enhanced mineralization and alkaline phosphatase activity were also observed under different perfusion conditions compared to the static conditions, indicating that the applied conditions play important roles in the proliferation and differentiation of hMSCs. Furthermore, we determined the expression levels of osteogenesis-related genes, including the runt-related protein 2 (Runx2), collagen type I (Col1), osteopontin (OPN), and osteocalcin (OCN), under various perfusion vis-à-vis static conditions and found that they were significantly affected by the applied conditions. Furthermore, the fluorescence intensities of OCN and OPN osteogenic gene markers were found to be enhanced in the 0.035 mL/min flow condition compared to the control, indicating that it was a suitable condition for osteogenic differentiation. Taken together, the findings of this study reveal that the developed cartridge device promotes the proliferation and differentiation of hMSCs and can potentially be used in the field of tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document