scholarly journals Aurora B and C kinases regulate prophase exit and chromosome segregation during spermatogenesis

2019 ◽  
Author(s):  
Stephen R. Wellard ◽  
Karen Schindler ◽  
Philip Jordan

ABSTRACTPrecise control of chromosome dynamics during meiosis is critical for fertility. A gametocyte undergoing meiosis coordinates formation of the synaptonemal complex (SC) to promote efficient homologous chromosome recombination. Subsequent disassembly of the SC is required prior to meiotic divisions to ensure accurate segregation of chromosomes. We examined the requirements of the mammalian Aurora kinases (AURKA, B, and C) during SC disassembly and chromosome segregation using a combination of chemical inhibition and gene deletion approaches. We find that both mouse and human spermatocytes fail to disassemble SC lateral elements when AURKB and AURKC are inhibited. Interestingly, both Aurkb conditional knockout and Aurkc knockout spermatocytes successfully progress through meiosis and mice are fertile. In contrast, Aurkb, Aurkc double knockout spermatocytes failed to coordinate disassembly of SC lateral elements with chromosome segregation, resulting in delayed meiotic progression, spindle assembly checkpoint failure, chromosome missegregation, and abnormal spermatids. Collectively, our data demonstrates that AURKB and AURKC functionally compensate for one another ensuring successful mammalian spermatogenesis.SUMMARYChemical inhibition and gene deletion approaches show that Aurora B and Aurora C have overlapping functions that ensure timely disassembly of lateral element components of the synaptonemal complex in mouse and human spermatocytes and ensure accurate chromosome segregation during meiosis.

2020 ◽  
Vol 133 (23) ◽  
pp. jcs248831
Author(s):  
Stephen R. Wellard ◽  
Karen Schindler ◽  
Philip W. Jordan

ABSTRACTPrecise control of chromosome dynamics during meiosis is critical for fertility. A gametocyte undergoing meiosis coordinates formation of the synaptonemal complex (SC) to promote efficient homologous chromosome recombination. Subsequent disassembly of the SC occurs prior to segregation of homologous chromosomes during meiosis I. We examined the requirements of the mammalian Aurora kinases (AURKA, AURKB and AURKC) during SC disassembly and chromosome segregation using a combination of chemical inhibition and gene deletion approaches. We find that both mouse and human spermatocytes fail to disassemble SC lateral elements when the kinase activity of AURKB and AURKC are chemically inhibited. Interestingly, both Aurkb conditional knockout and Aurkc knockout mouse spermatocytes successfully progress through meiosis, and the mice are fertile. In contrast, Aurkb, Aurkc double knockout spermatocytes fail to coordinate disassembly of SC lateral elements with chromosome condensation and segregation, resulting in delayed meiotic progression. In addition, deletion of Aurkb and Aurkc leads to an accumulation of metaphase spermatocytes, chromosome missegregation and aberrant cytokinesis. Collectively, our data demonstrate that AURKB and AURKC functionally compensate for one another ensuring successful mammalian spermatogenesis.This article has an associated First Person interview with the first author of the paper.


2019 ◽  
Vol 219 (2) ◽  
Author(s):  
Cai Liang ◽  
Zhenlei Zhang ◽  
Qinfu Chen ◽  
Haiyan Yan ◽  
Miao Zhang ◽  
...  

Aurora B kinase plays an essential role in chromosome bi-orientation, which is a prerequisite for equal segregation of chromosomes during mitosis. However, it remains largely unclear whether centromere-localized Aurora B is required for faithful chromosome segregation. Here we show that histone H3 Thr-3 phosphorylation (H3pT3) and H2A Thr-120 phosphorylation (H2ApT120) can independently recruit Aurora B. Disrupting H3pT3-mediated localization of Aurora B at the inner centromere impedes the decline in H2ApT120 during metaphase and causes H2ApT120-dependent accumulation of Aurora B at the kinetochore-proximal centromere. Consequently, silencing of the spindle assembly checkpoint (SAC) is delayed, whereas the fidelity of chromosome segregation is negligibly affected. Further eliminating an H2ApT120-dependent pool of Aurora B restores proper timing for SAC silencing but increases chromosome missegregation. Our data indicate that H2ApT120-mediated localization of Aurora B compensates for the loss of an H3pT3-dependent pool of Aurora B to correct improper kinetochore–microtubule attachments. This study provides important insights into how centromeric Aurora B regulates SAC and kinetochore attachment to microtubules to ensure error-free chromosome segregation.


2011 ◽  
Vol 22 (9) ◽  
pp. 1473-1485 ◽  
Author(s):  
Zuzana Storchová ◽  
Justin S. Becker ◽  
Nicolas Talarek ◽  
Sandra Kögelsberger ◽  
David Pellman

The conserved mitotic kinase Bub1 performs multiple functions that are only partially characterized. Besides its role in the spindle assembly checkpoint and chromosome alignment, Bub1 is crucial for the kinetochore recruitment of multiple proteins, among them Sgo1. Both Bub1 and Sgo1 are dispensable for growth of haploid and diploid budding yeast, but they become essential in cells with higher ploidy. We find that overexpression of SGO1 partially corrects the chromosome segregation defect of bub1Δ haploid cells and restores viability to bub1Δ tetraploid cells. Using an unbiased high-copy suppressor screen, we identified two members of the chromosomal passenger complex (CPC), BIR1 (survivin) and SLI15 (INCENP, inner centromere protein), as suppressors of the growth defect of both bub1Δ and sgo1Δ tetraploids, suggesting that these mutants die due to defects in chromosome biorientation. Overexpression of BIR1 or SLI15 also complements the benomyl sensitivity of haploid bub1Δ and sgo1Δ cells. Mutants lacking SGO1 fail to biorient sister chromatids attached to the same spindle pole (syntelic attachment) after nocodazole treatment. Moreover, the sgo1Δ cells accumulate syntelic attachments in unperturbed mitoses, a defect that is partially corrected by BIR1 or SLI15 overexpression. We show that in budding yeast neither Bub1 nor Sgo1 is required for CPC localization or affects Aurora B activity. Instead we identify Sgo1 as a possible partner of Mps1, a mitotic kinase suggested to have an Aurora B–independent function in establishment of biorientation. We found that Sgo1 overexpression rescues defects caused by metaphase inactivation of Mps1 and that Mps1 is required for Sgo1 localization to the kinetochore. We propose that Bub1, Sgo1, and Mps1 facilitate chromosome biorientation independently of the Aurora B–mediated pathway at the budding yeast kinetochore and that both pathways are required for the efficient turnover of syntelic attachments.


2014 ◽  
Vol 206 (7) ◽  
pp. 833-842 ◽  
Author(s):  
Antonio Espert ◽  
Pelin Uluocak ◽  
Ricardo Nunes Bastos ◽  
Davinderpreet Mangat ◽  
Philipp Graab ◽  
...  

The spindle assembly checkpoint (SAC) monitors correct attachment of chromosomes to microtubules, an important safeguard mechanism ensuring faithful chromosome segregation in eukaryotic cells. How the SAC signal is turned off once all the chromosomes have successfully attached to the spindle remains an unresolved question. Mps1 phosphorylation of Knl1 results in recruitment of the SAC proteins Bub1, Bub3, and BubR1 to the kinetochore and production of the wait-anaphase signal. SAC silencing is therefore expected to involve a phosphatase opposing Mps1. Here we demonstrate in vivo and in vitro that BubR1-associated PP2A-B56 is a key phosphatase for the removal of the Mps1-mediated Knl1 phosphorylations necessary for Bub1/BubR1 recruitment in mammalian cells. SAC silencing is thus promoted by a negative feedback loop involving the Mps1-dependent recruitment of a phosphatase opposing Mps1. Our findings extend the previously reported role for BubR1-associated PP2A-B56 in opposing Aurora B and suggest that BubR1-bound PP2A-B56 integrates kinetochore surveillance and silencing of the SAC.


2017 ◽  
Vol 114 (50) ◽  
pp. E10667-E10676 ◽  
Author(s):  
Xing Zhou ◽  
Fan Zheng ◽  
Chengliang Wang ◽  
Minhao Wu ◽  
Xiaozhen Zhang ◽  
...  

Kinetochores are superprotein complexes that orchestrate chromosome segregation via a dynamic interaction with spindle microtubules. A physical connection between CENP-C and the Mis12–Ndc80–Knl1 (KMN) protein network is an important pathway that is used to assemble kinetochores on CENP-A nucleosomes. Multiple outer kinetochore components are phosphorylated by Aurora B kinase to activate the spindle assembly checkpoint (SAC) and to ensure accurate chromosome segregation. However, it is unknown whether Aurora B can phosphorylate inner kinetochore components to facilitate proper mitotic chromosome segregation. Here, we reported the structure of the fission yeast Schizosaccharomyces pombe Mis12–Nnf1 complex and showed that N-terminal residues 26–50 in Cnp3 (the CENP-C homolog of S. pombe) are responsible for interacting with the Mis12 complex. Interestingly, Thr28 of Cnp3 is a substrate of Ark1 (the Aurora B homolog of S. pombe), and phosphorylation impairs the interaction between the Cnp3 and Mis12 complex. The expression of a phosphorylation-mimicking Cnp3 mutant results in defective chromosome segregation due to improper kinetochore assembly. These results establish a previously uncharacterized regulatory mechanism involved in CENP-C–Mis12-facilitated kinetochore attachment error correction to ensure accurate chromosome segregation during mitosis.


2021 ◽  
Author(s):  
Jessica D. Warren ◽  
Sarah Y. Valles ◽  
Duane A. Compton

AbstractProper attachment of spindle microtubules to kinetochores is necessary to satisfy the spindle assembly checkpoint and ensure faithful chromosome segregation. Microtubules detach from kinetochores to correct improperly oriented attachments, and overall kinetochore-microtubule (k-MT) attachment stability is determined in response to regulatory enzymes and the activities of kinetochore-associated microtubule stabilizing and destabilizing proteins. However, it is unknown whether regulatory enzyme activity or kinetochore-associated protein localization respond to subtle changes in k-MT attachment stability. To test for this feedback response, we monitored Aurora B kinase activity and the localization of select kinetochore proteins in metaphase cells following treatments that subtly stabilize or destabilize k-MT attachments using low dose Taxol or UMK57 (an MCAK agonist), respectively. Increasing k-MT stability induced changes in the abundance of some kinetochore proteins. In contrast, reducing k-MT stability induced both increases in Aurora B kinase signaling and changes in the abundance of some kinetochore proteins. Thus, kinetochores dynamically respond to changes in the stability of their attached microtubules. This feedback control contributes to tuning k-MT attachment stability required for efficient error correction to facilitate faithful chromosome segregation.Summary StatementLive cell imaging demonstrates that kinetochore signaling responds to feedback from attached microtubules to tune their stability to ensure faithful chromosome segregation during cell division.


2021 ◽  
Vol 22 (16) ◽  
pp. 8818
Author(s):  
Shelby L. McVey ◽  
Jenna K. Cosby ◽  
Natalie J. Nannas

The accurate segregation of chromosomes is essential for the survival of organisms and cells. Mistakes can lead to aneuploidy, tumorigenesis and congenital birth defects. The spindle assembly checkpoint ensures that chromosomes properly align on the spindle, with sister chromatids attached to microtubules from opposite poles. Here, we review how tension is used to identify and selectively destabilize incorrect attachments, and thus serves as a trigger of the spindle assembly checkpoint to ensure fidelity in chromosome segregation. Tension is generated on properly attached chromosomes as sister chromatids are pulled in opposing directions but resisted by centromeric cohesin. We discuss the role of the Aurora B kinase in tension-sensing and explore the current models for translating mechanical force into Aurora B-mediated biochemical signals that regulate correction of chromosome attachments to the spindle.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Juan Zhao ◽  
Hui Li ◽  
Guangxin Chen ◽  
Lijun Du ◽  
Peiyan Xu ◽  
...  

Abstract Background Aneuploidy is the most frequent cause of early-embryo abortion. Any defect in chromosome segregation would fail to satisfy the spindle assembly checkpoint (SAC) during mitosis, halting metaphase and causing aneuploidy. The mitotic checkpoint complex (MCC), comprising MAD1, MAD2, Cdc20, BUBR1 and BUB3, plays a vital role in SAC activation. Studies have confirmed that overexpression of MAD2 and BUBR1 can facilitate correct chromosome segregation and embryo stability. Research also proves that miR-125b negatively regulates MAD1 expression by binding to its 3′UTR. However, miR-125b, Mad1 and Bub3 gene expression in aneuploid embryos of spontaneous abortion has not been reported to date. Methods In this study, embryonic villi from miscarried pregnancies were collected and divided into two groups (aneuploidy and euploidy) based on High-throughput ligation-dependent probe amplification (HLPA) and Fluorescence in situ hybridization (FISH) analyses. RNA levels of miR-125b, MAD1 and BUB3 were detected by Quantitative real-time PCR (qRT-PCR); protein levels of MAD1 and BUB3 were analysed by Western blotting. Results statistical analysis (p < 0.05) showed that miR-125b and BUB3 were significantly down-regulated in the aneuploidy group compared to the control group and that MAD1 was significantly up-regulated. Additionally, the MAD1 protein level was significantly higher in aneuploidy abortion villus, but BUB3 protein was only mildly increased. Correlation analysis revealed that expression of MAD1 correlated negatively with miR-125b. Conclusion These results suggest that aneuploid abortion correlates positively with MAD1 overexpression, which might be caused by insufficient levels of miR-125b. Taken together, our findings first confirmed the negative regulatory mode between MAD1 and miR-125b, providing a basis for further mechanism researches in aneuploid abortion.


Genetics ◽  
2003 ◽  
Vol 163 (2) ◽  
pp. 539-544 ◽  
Author(s):  
Hasanuzzaman Bhuiyan ◽  
Gunilla Dahlfors ◽  
Karin Schmekel

Abstract The synaptonemal complex (SC) keeps the synapsed homologous chromosomes together during pachytene in meiotic prophase I. Structures that resemble stacks of SCs, polycomplexes, are sometimes found before or after pachytene. We have investigated ndt80 mutants of yeast, which arrest in pachytene. SCs appear normal in spread chromosome preparations, but are only occasionally found in intact nuclei examined in the electron microscope. Instead, large polycomplexes occur in almost every ndt80 mutant nucleus. Immunoelectron microscopy using DNA antibodies show strong preferential labeling to the lateral element parts of the polycomplexes. In situ hybridization using chromosome-specific probes confirms that the chromosomes in ndt80 mutants are paired and attached to the SCs. Our results suggest that polycomplexes can be involved in binding of chromosomes and possibly also in synapsis.


Genetics ◽  
2003 ◽  
Vol 165 (2) ◽  
pp. 489-503 ◽  
Author(s):  
Karen E Ross ◽  
Orna Cohen-Fix

Abstract Cdh1p, a substrate specificity factor for the cell cycle-regulated ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C), promotes exit from mitosis by directing the degradation of a number of proteins, including the mitotic cyclins. Here we present evidence that Cdh1p activity at the M/G1 transition is important not only for mitotic exit but also for high-fidelity chromosome segregation in the subsequent cell cycle. CDH1 showed genetic interactions with MAD2 and PDS1, genes encoding components of the mitotic spindle assembly checkpoint that acts at metaphase to prevent premature chromosome segregation. Unlike cdh1Δ and mad2Δ single mutants, the mad2Δ cdh1Δ double mutant grew slowly and exhibited high rates of chromosome and plasmid loss. Simultaneous deletion of PDS1 and CDH1 caused extensive chromosome missegregation and cell death. Our data suggest that at least part of the chromosome loss can be attributed to kinetochore/spindle problems. Our data further suggest that Cdh1p and Sic1p, a Cdc28p/Clb inhibitor, have overlapping as well as nonoverlapping roles in ensuring proper chromosome segregation. The severe growth defects of both mad2Δ cdh1Δ and pds1Δ cdh1Δ strains were rescued by overexpressing Swe1p, a G2/M inhibitor of the cyclin-dependent kinase, Cdc28p/Clb. We propose that the failure to degrade cyclins at the end of mitosis leaves cdh1Δ mutant strains with abnormal Cdc28p/Clb activity that interferes with proper chromosome segregation.


Sign in / Sign up

Export Citation Format

Share Document