scholarly journals Aurora B and C kinases regulate chromosome desynapsis and segregation during mouse and human spermatogenesis

2020 ◽  
Vol 133 (23) ◽  
pp. jcs248831
Author(s):  
Stephen R. Wellard ◽  
Karen Schindler ◽  
Philip W. Jordan

ABSTRACTPrecise control of chromosome dynamics during meiosis is critical for fertility. A gametocyte undergoing meiosis coordinates formation of the synaptonemal complex (SC) to promote efficient homologous chromosome recombination. Subsequent disassembly of the SC occurs prior to segregation of homologous chromosomes during meiosis I. We examined the requirements of the mammalian Aurora kinases (AURKA, AURKB and AURKC) during SC disassembly and chromosome segregation using a combination of chemical inhibition and gene deletion approaches. We find that both mouse and human spermatocytes fail to disassemble SC lateral elements when the kinase activity of AURKB and AURKC are chemically inhibited. Interestingly, both Aurkb conditional knockout and Aurkc knockout mouse spermatocytes successfully progress through meiosis, and the mice are fertile. In contrast, Aurkb, Aurkc double knockout spermatocytes fail to coordinate disassembly of SC lateral elements with chromosome condensation and segregation, resulting in delayed meiotic progression. In addition, deletion of Aurkb and Aurkc leads to an accumulation of metaphase spermatocytes, chromosome missegregation and aberrant cytokinesis. Collectively, our data demonstrate that AURKB and AURKC functionally compensate for one another ensuring successful mammalian spermatogenesis.This article has an associated First Person interview with the first author of the paper.

2019 ◽  
Author(s):  
Stephen R. Wellard ◽  
Karen Schindler ◽  
Philip Jordan

ABSTRACTPrecise control of chromosome dynamics during meiosis is critical for fertility. A gametocyte undergoing meiosis coordinates formation of the synaptonemal complex (SC) to promote efficient homologous chromosome recombination. Subsequent disassembly of the SC is required prior to meiotic divisions to ensure accurate segregation of chromosomes. We examined the requirements of the mammalian Aurora kinases (AURKA, B, and C) during SC disassembly and chromosome segregation using a combination of chemical inhibition and gene deletion approaches. We find that both mouse and human spermatocytes fail to disassemble SC lateral elements when AURKB and AURKC are inhibited. Interestingly, both Aurkb conditional knockout and Aurkc knockout spermatocytes successfully progress through meiosis and mice are fertile. In contrast, Aurkb, Aurkc double knockout spermatocytes failed to coordinate disassembly of SC lateral elements with chromosome segregation, resulting in delayed meiotic progression, spindle assembly checkpoint failure, chromosome missegregation, and abnormal spermatids. Collectively, our data demonstrates that AURKB and AURKC functionally compensate for one another ensuring successful mammalian spermatogenesis.SUMMARYChemical inhibition and gene deletion approaches show that Aurora B and Aurora C have overlapping functions that ensure timely disassembly of lateral element components of the synaptonemal complex in mouse and human spermatocytes and ensure accurate chromosome segregation during meiosis.


2021 ◽  
Author(s):  
Alisa K. White ◽  
Marybeth Baumgartner ◽  
Madisen F. Lee ◽  
Kyle D. Drake ◽  
Gabriela S. Aquino ◽  
...  

AbstractMutations in minor spliceosome component RNU4ATAC, a small nuclear RNA (snRNA), are linked to primary microcephaly. We have reported that in the conditional knockout (cKO) mice for Rnu11, another minor spliceosome snRNA, minor intron splicing defect in minor intron-containing genes (MIGs) regulating cell cycle resulted in cell cycle defects, with a concomitant increase in γH2aX+ cells and p53-mediated apoptosis. Trp53 ablation in the Rnu11 cKO mice did not prevent microcephaly. However, RNAseq analysis of the double knockout (dKO) pallium reflected transcriptomic shift towards the control from the Rnu11 cKO. We found elevated minor intron retention and alternative splicing across minor introns in the dKO. Disruption of these MIGs resulted in cell cycle defects that were more severe and detected earlier in the dKO, but with delayed detection of γH2aX+ DNA damage. Thus, p53 might also play a role in causing DNA damage in the developing pallium. In all, our findings further refine our understanding of the role of the minor spliceosome in cortical development and identify MIGs underpinning microcephaly in minor spliceosome-related diseases.


2018 ◽  
Vol 19 (9) ◽  
pp. 2841 ◽  
Author(s):  
Marketa Koncicka ◽  
Anna Tetkova ◽  
Denisa Jansova ◽  
Edgar Del Llano ◽  
Lenka Gahurova ◽  
...  

The rate of chromosome segregation errors that emerge during meiosis I in the mammalian female germ line are known to increase with maternal age; however, little is known about the underlying molecular mechanism. The objective of this study was to analyze meiotic progression of mouse oocytes in relation to maternal age. Using the mouse as a model system, we analyzed the timing of nuclear envelope breakdown and the morphology of the nuclear lamina of oocytes obtained from young (2 months old) and aged females (12 months old). Oocytes obtained from older females display a significantly faster progression through meiosis I compared to the ones obtained from younger females. Furthermore, in oocytes from aged females, lamin A/C structures exhibit rapid phosphorylation and dissociation. Additionally, we also found an increased abundance of MPF components and increased translation of factors controlling translational activity in the oocytes of aged females. In conclusion, the elevated MPF activity observed in aged female oocytes affects precocious meiotic processes that can multifactorially contribute to chromosomal errors in meiosis I.


2021 ◽  
Author(s):  
Eugenia M. Yazlovitskaya ◽  
Erin Plosa ◽  
Fabian Bock ◽  
Olga M. Viquez ◽  
Glenda Mernaugh ◽  
...  

The main laminin (LM)-binding integrins α3β1, α6β1 and α6β4 are co-expressed in the developing kidney collecting duct (CD) system. We previously showed that deleting the integrin α3 or α6 subunit in the ureteric bud (UB), which gives rise to the kidney collecting system, caused either a mild or no branching morphogenesis phenotype, respectively. To determine whether these two integrin subunits co-operate in kidney CD development, we deleted α3 and α6 in the developing UB. The collecting system of the double knockout phenocopied the α3 integrin conditional knockout. However, with age the mice developed severe inflammation and fibrosis around the CDs resulting in kidney failure. Integrin α3α6 null CD epithelial cells showed increased secretion of pro-inflammatory cytokines and displayed mesenchymal characterisitcs causing loss of barrier function. These features resulted from increased NF-κB activity, which regulated the Snail/Slug transcription factors and their downstream targets. These data suggest that LM-binding integrins play a key role in the maintenance of kidney tubule epithelial cell polarity and decrease pro-inflammatory cytokine secretion by regulating NF-κB-dependent signaling.


2005 ◽  
Vol 16 (1) ◽  
pp. 212-217 ◽  
Author(s):  
Rupert Öllinger ◽  
Manfred Alsheimer ◽  
Ricardo Benavente

Synaptonemal complexes (SCs) are evolutionary conserved, meiosis-specific structures that play a central role in synapsis of homologous chromosomes, chiasmata distribution, and chromosome segregation. However, it is still for the most part unclear how SCs do assemble during meiotic prophase. Major components of mammalian SCs are the meiosis-specific proteins SCP1, 2, and 3. To investigate the role of SCP1 in SC assembly, we expressed SCP1 in a heterologous system, i.e., in COS-7 cells that normally do not express SC proteins. Notably, under these experimental conditions SCP1 is able to form structures that closely resemble SCs (i.e., polycomplexes). Moreover, we show that mutations that modify the length of the central α-helical domain of SCP1 influence the width of polycomplexes. Finally, we demonstrate that deletions of the nonhelical N- or C-termini both affect polycomplex assembly, although in a different manner. We conclude that SCP1 is a primary determinant of SC assembly that plays a key role in synapsis of homologous chromosomes.


2020 ◽  
Vol 52 (7) ◽  
pp. 702-707 ◽  
Author(s):  
Wenzhu Li ◽  
Xiangwei He

Abstract Canonical meiosis is characterized by two sequential rounds of nuclear divisions following one round of DNA replication—reductional segregation of homologous chromosomes during the first division and equational segregation of sister chromatids during the second division. Meiosis in an inverted order of two nuclear divisions—inverted meiosis has been observed in several species with holocentromeres as an adaptive strategy to overcome the obstacle in executing a canonical meiosis due to the holocentric chromosome structure. Recent findings of co-existence of inverted and canonical meiosis in two monocentric organisms, human and fission yeast, suggested that inverted meiosis could be common and also lead to the puzzle regarding the mechanistic feasibility for executing two meiosis programs simultaneously. Here, we discuss apparent conflicts for concurrent canonical meiosis and inverted meiosis. Furthermore, we attempt to provide a working model that may be compatible for both forms of meiosis.


Blood ◽  
2012 ◽  
Vol 119 (12) ◽  
pp. 2789-2798 ◽  
Author(s):  
Jinwei Du ◽  
Yu Chen ◽  
Qiang Li ◽  
Xiangzi Han ◽  
Cindy Cheng ◽  
...  

Abstract Cited2 is a transcriptional modulator involved in various biologic processes including fetal liver hematopoiesis. In the present study, the function of Cited2 in adult hematopoiesis was investigated in conditional knockout mice. Deletion of Cited2 using Mx1-Cre resulted in increased hematopoietic stem cell (HSC) apoptosis, loss of quiescence, and increased cycling, leading to a severely impaired reconstitution capacity as assessed by 5-fluorouracil treatment and long-term transplantation. Transcriptional profiling revealed that multiple HSC quiescence- and hypoxia-related genes such as Egr1, p57, and Hes1 were affected in Cited2-deficient HSCs. Because Cited2 is a negative regulator of HIF-1, which is essential for maintaining HSC quiescence, and because we demonstrated previously that decreased HIF-1α gene dosage partially rescues both cardiac and lens defects caused by Cited2 deficiency, we generated Cited2 and HIF-1α double-knockout mice. Additional deletion of HIF-1α in Cited2-knockout BM partially rescued impaired HSC quiescence and reconstitution capacity. At the transcriptional level, deletion of HIF-1α restored expression of p57 and Hes1 but not Egr1 to normal levels. Our results suggest that Cited2 regulates HSC quiescence through both HIF-1–dependent and HIF-1–independent pathways.


2008 ◽  
Vol 19 (3) ◽  
pp. 1199-1209 ◽  
Author(s):  
Brendan M. Kiburz ◽  
Angelika Amon ◽  
Adele L. Marston

Chromosome segregation must be executed accurately during both mitotic and meiotic cell divisions. Sgo1 plays a key role in ensuring faithful chromosome segregation in at least two ways. During meiosis this protein regulates the removal of cohesins, the proteins that hold sister chromatids together, from chromosomes. During mitosis, Sgo1 is required for sensing the absence of tension caused by sister kinetochores not being attached to microtubules emanating from opposite poles. Here we describe a differential requirement for Sgo1 in the segregation of homologous chromosomes and sister chromatids. Sgo1 plays only a minor role in segregating homologous chromosomes at meiosis I. In contrast, Sgo1 is important to bias sister kinetochores toward biorientation. We suggest that Sgo1 acts at sister kinetochores to promote their biorientation.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Liangyu Zhang ◽  
Simone Köhler ◽  
Regina Rillo-Bohn ◽  
Abby F Dernburg

During meiosis, each pair of homologous chromosomes typically undergoes at least one crossover (crossover assurance), but these exchanges are strictly limited in number and widely spaced along chromosomes (crossover interference). The molecular basis for this chromosome-wide regulation remains mysterious. A family of meiotic RING finger proteins has been implicated in crossover regulation across eukaryotes. Caenorhabditis elegans expresses four such proteins, of which one (ZHP-3) is known to be required for crossovers. Here we investigate the functions of ZHP-1, ZHP-2, and ZHP-4. We find that all four ZHP proteins, like their homologs in other species, localize to the synaptonemal complex, an unusual, liquid crystalline compartment that assembles between paired homologs. Together they promote accumulation of pro-crossover factors, including ZHP-3 and ZHP-4, at a single recombination intermediate, thereby patterning exchanges along paired chromosomes. These proteins also act at the top of a hierarchical, symmetry-breaking process that enables crossovers to direct accurate chromosome segregation.


Author(s):  
Eelco C. Tromer ◽  
Thomas A. Wemyss ◽  
Ross F. Waller ◽  
Bungo Akiyoshi

AbstractChromosome segregation in eukaryotes is driven by a macromolecular protein complex called the kinetochore that connects centromeric DNA to microtubules of the spindle apparatus. Kinetochores in well-studied model eukaryotes consist of a core set of proteins that are broadly conserved among distant eukaryotic phyla. In contrast, unicellular flagellates of the class Kinetoplastida have a unique set of kinetochore components. The evolutionary origin and history of these kinetochores remains unknown. Here, we report evidence of homology between three kinetoplastid kinetochore proteins KKT16–18 and axial element components of the synaptonemal complex, such as the SYCP2:SYCP3 multimers found in vertebrates. The synaptonemal complex is a zipper-like structure that assembles between homologous chromosomes during meiosis to promote recombination. Using a sensitive homology detection protocol, we identify divergent orthologues of SYCP2:SYCP3 in most eukaryotic supergroups including other experimentally established axial element components, such as Red1 and Rec10 in budding and fission yeast, and the ASY3:ASY4 multimers in land plants. These searches also identify KKT16–18 as part of this rapidly evolving protein family. The widespread presence of the SYCP2-3 gene family in extant eukaryotes suggests that the synaptonemal complex was likely present in the last eukaryotic common ancestor. We found at least twelve independent duplications of the SYCP2-3 gene family throughout the eukaryotic tree of life, providing opportunities for new functional complexes to arise, including KKT16–18 in Trypanosoma brucei. We propose that kinetoplastids evolved their unique kinetochore system by repurposing meiotic components of the chromosome synapsis and homologous recombination machinery that were already present in early eukaryotes.


Sign in / Sign up

Export Citation Format

Share Document