scholarly journals Dissecting molecular regulatory mechanisms underlying noncoding susceptibility SNPs associated with 19 autoimmune diseases using multi-omics integrative analysis

2019 ◽  
Author(s):  
Xiao-Feng Chen ◽  
Min-Rui Guo ◽  
Yuan-Yuan Duan ◽  
Feng Jiang ◽  
Hao Wu ◽  
...  

AbstractThe genome-wide association studies (GWAS) have identified hundreds of susceptibility loci associated with autoimmune diseases. However, over 90% of risk variants are located in the noncoding regions, leading to great challenges in deciphering the underlying causal functional variants/genes and biological mechanisms. Previous studies focused on developing new scoring method to prioritize functional/disease-relevant variants. However, they principally incorporated annotation data across all cells/tissues while omitted the cell-specific or context-specific regulation. Moreover, limited analyses were performed to dissect the detailed molecular regulatory circuits linking functional GWAS variants to disease etiology. Here we devised a new analysis frame that incorporate hundreds of immune cell-specific multi-omics data to prioritize functional noncoding susceptibility SNPs with gene targets and further dissect their downstream molecular mechanisms and clinical applications for 19 autoimmune diseases. Most prioritized SNPs have genetic associations with transcription factors (TFs) binding, histone modification or chromatin accessibility, indicating their allelic regulatory roles on target genes. Their target genes were significantly enriched in immunologically related pathways and other immunologically related functions. We also detected long-range regulation on 90.7% of target genes including 132 ones exclusively regulated by distal SNPs (eg, CD28, IL2RA), which involves several potential key TFs (eg, CTCF), suggesting the important roles of long-range chromatin interaction in autoimmune diseases. Moreover, we identified hundreds of known or predicted druggable genes, and predicted some new potential drug targets for several autoimmune diseases, including two genes (NFKB1, SH2B3) with known drug indications on other diseases, highlighting their potential drug repurposing opportunities. In summary, our analyses may provide unique resource for future functional follow-up and drug application on autoimmune diseases, which are freely available at http://fngwas.online/.Author SummaryAutoimmune diseases are groups of complex immune system disorders with high prevalence rates and high heritabilities. Previous studies have unraveled thousands of SNPs associated with different autoimmune diseases. However, it remains largely unknown on the molecular mechanisms underlying these genetic associations. Striking, over 90% of risk SNPs are located in the noncoding region. By leveraging multiple immune cell-specific multi-omics data across genomic, epigenetic, transcriptomic and 3D chromatin interaction information, we systematically analyzed the functional variants/genes and biological mechanisms underlying genetic association on 19 autoimmune diseases. We found that most functional SNPs may affect target gene expression through altering transcription factors (TFs) binding, histone modification or chromatin accessibility. Most target genes had known immunological functions. We detected prevailing long-range chromatin interaction linking distal functional SNPs to target genes. We also identified many known drug targets and predicted some new drug target genes for several autoimmune diseases, suggesting their potential clinical applications. All analysis results and tools are available online, which may provide unique resource for future functional follow-up and drug application. Our study may help reduce the gap between traditional genetic findings and biological mechanistically exploration of disease etiologies as well as clinical drug development.

2019 ◽  
Author(s):  
João Pedro de Magalhães ◽  
Jingwei Wang

AbstractAssociating genetic variants with phenotypes is not only important to understand the underlying biology but also to identify potential drug targets for treating diseases. It is widely accepted that for most complex traits many associations remain to be discovered, the so-called “missing heritability.” Yet missing heritability can be estimated, it is a known unknown, and we argue is only a fraction of the unknowns in genetics. The majority of possible genetic variants in the genome space are either too rare to be detected or even entirely absent from populations, and therefore do not contribute to estimates of phenotypic or genetic variability. We call these unknown unknowns in genetics the “fog of genetics.” Using data from the 1000 Genomes Project we then show that larger genes with greater genetic diversity are more likely to be associated with human traits, demonstrating that genetic associations are biased towards particular types of genes and that the genetic information we are lacking about traits and diseases is potentially immense. Our results and model have multiple implications for how genetic variability is perceived to influence complex traits, provide insights on molecular mechanisms of disease and for drug discovery efforts based on genetic information.


2019 ◽  
Author(s):  
Christopher DeBoever ◽  
AJ Venkatakrishnan ◽  
Joseph M Paggi ◽  
Franziska M. Heydenreich ◽  
Suli-Anne Laurin ◽  
...  

AbstractG protein-coupled receptors (GPCRs) drive an array of critical physiological functions and are an important class of drug targets, though a map of which GPCR genetic variants are associated with phenotypic variation is lacking. We performed a phenome-wide association analysis for 269 common protein-altering variants in 156 GPCRs and 275 phenotypes, including disease outcomes and diverse quantitative measurements, using 337,205 UK Biobank participants and identified 138 associations. We discovered novel associations between GPCR variants and migraine risk, hypothyroidism, and dietary consumption. We also demonstrated experimentally that variants in the β2 adrenergic receptor (ADRB2) associated with immune cell counts and pulmonary function and variants in the gastric inhibitory polypeptide receptor (GIPR) associated with food intake and body size affect downstream signaling pathways. Overall, this study provides a map of genetic associations for GPCR coding variants across a wide variety of phenotypes, which can inform future drug discovery efforts targeting GPCRs.


2017 ◽  
Vol 242 (13) ◽  
pp. 1325-1334 ◽  
Author(s):  
Yizhou Zhu ◽  
Cagdas Tazearslan ◽  
Yousin Suh

Genome-wide association studies have shown that the far majority of disease-associated variants reside in the non-coding regions of the genome, suggesting that gene regulatory changes contribute to disease risk. To identify truly causal non-coding variants and their affected target genes remains challenging but is a critical step to translate the genetic associations to molecular mechanisms and ultimately clinical applications. Here we review genomic/epigenomic resources and in silico tools that can be used to identify causal non-coding variants and experimental strategies to validate their functionalities. Impact statement Most signals from genome-wide association studies (GWASs) map to the non-coding genome, and functional interpretation of these associations remained challenging. We reviewed recent progress in methodologies of studying the non-coding genome and argued that no single approach allows one to effectively identify the causal regulatory variants from GWAS results. By illustrating the advantages and limitations of each method, our review potentially provided a guideline for taking a combinatorial approach to accurately predict, prioritize, and eventually experimentally validate the causal variants.


Author(s):  
Kousik Kundu ◽  
Alice L. Mann ◽  
Manuel Tardaguila ◽  
Stephen Watt ◽  
Hannes Ponstingl ◽  
...  

AbstractThe identification of causal genetic variants for common diseases improves understanding of disease biology. Here we use data from the BLUEPRINT project to identify regulatory quantitative trait loci (QTL) for three primary human immune cell types and use these to fine-map putative causal variants for twelve immune-mediated diseases. We identify 340 unique, non major histocompatibility complex (MHC) disease loci that colocalise with high (>98%) posterior probability with regulatory QTLs, and apply Bayesian frameworks to fine-map associations at each locus. We show that fine-mapping applied to regulatory QTLs yields smaller credible set sizes and higher posterior probabilities for candidate causal variants compared to disease summary statistics. We also describe a systematic under-representation of insertion/deletion (INDEL) polymorphisms in credible sets derived from publicly available disease meta-analysis when compared to QTLs based on genome-sequencing data. Overall, our findings suggest that fine-mapping applied to disease-colocalising regulatory QTLs can enhance the discovery of putative causal disease variants and provide insights into the underlying causal genes and molecular mechanisms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Evelien G. G. Sprenkeler ◽  
Carla Guenther ◽  
Imrul Faisal ◽  
Taco W. Kuijpers ◽  
Susanna C. Fagerholm

Megakaryoblastic leukemia 1 (MKL1) deficiency is one of the most recently discovered primary immunodeficiencies (PIDs) caused by cytoskeletal abnormalities. These immunological “actinopathies” primarily affect hematopoietic cells, resulting in defects in both the innate immune system (phagocyte defects) and adaptive immune system (T-cell and B-cell defects). MKL1 is a transcriptional coactivator that operates together with serum response factor (SRF) to regulate gene transcription. The MKL/SRF pathway has been originally described to have important functions in actin regulation in cells. Recent results indicate that MKL1 also has very important roles in immune cells, and that MKL1 deficiency results in an immunodeficiency affecting the migration and function of primarily myeloid cells such as neutrophils. Interestingly, several actinopathies are caused by mutations in genes which are recognized MKL(1/2)-dependent SRF-target genes, namely ACTB, WIPF1, WDR1, and MSN. Here we summarize these and related (ARPC1B) actinopathies and their effects on immune cell function, especially focusing on their effects on leukocyte adhesion and migration. Furthermore, we summarize recent therapeutic efforts targeting the MKL/SRF pathway in disease.


2020 ◽  
Author(s):  
Wei Yu ◽  
V. Praveen Chakravarthi ◽  
Shaon Borosha ◽  
Anamika Ratri ◽  
Khyati Dalal ◽  
...  

ABSTRACTSATB homeobox proteins are important regulators of developmental gene expression. Among the stem cell lineages determined during early embryonic development, trophoblast stem (TS) cells exhibit robust SATB expression. Both SATB1 and SATB2 act to maintain trophoblast stem-state. However, the molecular mechanisms that regulate TS-specific Satb expression are not yet known. We identified Satb1 variant 2 as the predominant transcript in trophoblasts. Histone marks, and RNA polymerase II occupancy in TS cells indicated active state of the promoter. A novel cis-regulatory region with active histone marks was identified ∼21kbp upstream of variant 2 promoter. CRISPR/Cas9 mediated disruption of this sequence decreased Satb1 expression in TS cells and chromatin conformation capture confirmed looping of this regulatory region into the promoter. Scanning position weight matrices across the enhancer predicted two ELF5 binding sites in close vicinity of SATB1 sites, which were confirmed by chromatin immunoprecipitation. Knockdown of ELF5 downregulated Satb1 expression in TS cells and overexpression of ELF5 increased the enhancer-reporter activity. Interestingly, ELF5 interacts with SATB1 in TS cells, and the enhancer activity was upregulated following SATB overexpression. Our findings indicate that trophoblast-specific Satb1 expression is regulated by long-range chromatin looping of an enhancer that interacts with ELF5 and SATB proteins.


2017 ◽  
Author(s):  
Lina Wadi ◽  
Liis Uusküla-Reimand ◽  
Keren Isaev ◽  
Shimin Shuai ◽  
Vincent Huang ◽  
...  

AbstractA comprehensive catalogue of the mutations that drive tumorigenesis and progression is essential to understanding tumor biology and developing therapies. Protein-coding driver mutations have been well-characterized by large exome-sequencing studies, however many tumors have no mutations in protein-coding driver genes. Non-coding mutations are thought to explain many of these cases, however few non-coding drivers besides TERT promoter are known. To fill this gap, we analyzed 150,000 cis-regulatory regions in 1,844 whole cancer genomes from the ICGC-TCGA PCAWG project. Using our new method, ActiveDriverWGS, we found 41 frequently mutated regulatory elements (FMREs) enriched in non-coding SNVs and indels (FDR<0.05) characterized by aging-associated mutation signatures and frequent structural variants. Most FMREs are distal from genes, reported here for the first time and also recovered by additional driver discovery methods. FMREs were enriched in super-enhancers, H3K27ac enhancer marks of primary tumors and long-range chromatin interactions, suggesting that the mutations drive cancer by distally controlling gene expression through threedimensional genome organization. In support of this hypothesis, the chromatin interaction network of FMREs and target genes revealed associations of mutations and differential gene expression of known and novel cancer genes (e.g., CNNB1IP1, RCC1), activation of immune response pathways and altered enhancer marks. Thus distal genomic regions may include additional, infrequently mutated drivers that act on target genes via chromatin loops. Our study is an important step towards finding such regulatory regions and deciphering the somatic mutation landscape of the non-coding genome.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei-Yang Chen ◽  
Hu Chen ◽  
Kana Hamada ◽  
Eleonora Gatta ◽  
Ying Chen ◽  
...  

AbstractAlcohol use disorder (AUD) is highly comorbid with depression. Withdrawal from chronic alcohol drinking results in depression and understanding brain molecular mechanisms that drive withdrawal-related depression is important for finding new drug targets to treat these comorbid conditions. Here, we performed RNA sequencing of the rat hippocampus during withdrawal from chronic alcohol drinking to discover key signaling pathways involved in alcohol withdrawal-related depressive-like behavior. Data were analyzed by weighted gene co-expression network analysis to identify several modules of co-expressed genes that could have a common underlying regulatory mechanism. One of the hub, or highly interconnected, genes in module 1 that increased during alcohol withdrawal was the transcription factor, signal transducer and activator of transcription 3 (Stat3), a known regulator of immune gene expression. Total and phosphorylated (p)STAT3 protein levels were also increased in the hippocampus during withdrawal after chronic alcohol exposure. Further, pSTAT3 binding was enriched at the module 1 genes Gfap, Tnfrsf1a, and Socs3 during alcohol withdrawal. Notably, pSTAT3 and its target genes were elevated in the postmortem hippocampus of human subjects with AUD when compared with control subjects. To determine the behavioral relevance of STAT3 activation during alcohol withdrawal, we treated rats with the STAT3 inhibitor stattic and tested for sucrose preference as a measure of anhedonia. STAT3 inhibition alleviated alcohol withdrawal-induced anhedonia. These results demonstrate activation of STAT3 signaling in the hippocampus during alcohol withdrawal in rats and in human AUD subjects, and suggest that STAT3 could be a therapeutic target for reducing comorbid AUD and depression.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Xia Shen ◽  
Zhenyu Zhao ◽  
Hao Wang ◽  
Zihu Guo ◽  
Benxiang Hu ◽  
...  

Objective. This study was aimed at elucidating the molecular mechanisms underlying the anti-inflammatory effect of the combined application of Bupleuri Radix and Scutellariae Radix and explored the potential therapeutic efficacy of these two drugs on inflammation-related diseases. Methods. After searching the databases, we collected the active ingredients of Bupleuri Radix and Scutellariae Radix and calculated their oral bioavailability (OB) and drug-likeness (DL) based on the absorption-distribution-metabolism-elimination (ADME) model. In addition, we predicted the drug targets of the selected active components based on weighted ensemble similarity (WES) and used them to construct a drug-target network. Gene ontology (GO) analysis and KEGG mapper tools were performed on these predicted target genes. Results. We obtained 30 compounds from Bupleuri Radix and Scutellariae Radix of good quality as indicated by ADME assays, which possess potential pharmacological activity. These 30 ingredients have a total of 121 potential target genes, which are involved in 24 biological processes related to inflammation. Conclusions. Combined application of Bupleuri Radix and Scutellariae Radix was found not only to directly inhibit the synthesis and release of inflammatory cytokines, but also to have potential therapeutic effects against inflammation-induced pain. In addition, a combination therapy of these two drugs exhibited systemic treatment efficacy and provided a theoretical basis for the development of drugs against inflammatory diseases.


Acta Naturae ◽  
2012 ◽  
Vol 4 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Yu. P. Rubtsov ◽  
Yu. G. Suzdaltseva ◽  
K. V. Goryunov ◽  
N. I. Kalinina ◽  
V. Yu. Sysoeva ◽  
...  

Immune cells responsible for inflammation development are involved in tissue damage caused by wounding and various pathologies. Control of immune cell activation could be of significant benefit for regenerative medicine and the treatment of patients with autoimmune and degenerative diseases. It is a proven fact that MCSs (multipotent mesenchymal stromal cells) are capable of suppressing immune responses via the inhibition of dendritic cell maturation and via the restraining of the T, B, and NK cell function in the course of autoimmune diseases and various forms of inflammation. MSCs can be isolated easily from almost every type of tissue or organ and subsequently expanded in vitro. These cells are self-renewable and can be differentiated into various cell types of mesenchymal lineage. The current review contains a collection and critical analysis of data regarding the molecular mechanisms responsible for cross-talk between immune cells and MSCs. Some of these mechanisms can be used for the development of new practical approaches for the treatment of autoimmune diseases.


Sign in / Sign up

Export Citation Format

Share Document