scholarly journals mTOR-Dependent Cell Survival Mechanisms

2012 ◽  
Vol 4 (12) ◽  
pp. a008771-a008771 ◽  
Author(s):  
C.-M. Hung ◽  
L. Garcia-Haro ◽  
C. A. Sparks ◽  
D. A. Guertin
2007 ◽  
Vol 121 (5) ◽  
pp. 1001-1011 ◽  
Author(s):  
Emis M. Akbari ◽  
Diptendu Chatterjee ◽  
Frédéric Lévy ◽  
Alison S. Fleming

2008 ◽  
Vol 28 (12) ◽  
pp. 4004-4017 ◽  
Author(s):  
Maria Philippova ◽  
Danila Ivanov ◽  
Manjunath B. Joshi ◽  
Emmanouil Kyriakakis ◽  
Katharina Rupp ◽  
...  

ABSTRACT There is scant knowledge regarding how cell surface lipid-anchored T-cadherin (T-cad) transmits signals through the plasma membrane to its intracellular targets. This study aimed to identify membrane proteins colocalizing with atypical glycosylphosphatidylinositol (GPI)-anchored T-cad on the surface of endothelial cells and to evaluate their role as signaling adaptors for T-cad. Application of coimmunoprecipitation from endothelial cells expressing c-myc-tagged T-cad and high-performance liquid chromatography revealed putative association of T-cad with the following proteins: glucose-related protein GRP78, GABA-A receptor α1 subunit, integrin β3, and two hypothetical proteins, LOC124245 and FLJ32070. Association of Grp78 and integrin β3 with T-cad on the cell surface was confirmed by surface biotinylation and reciprocal immunoprecipitation and by confocal microscopy. Use of anti-Grp78 blocking antibodies, Grp78 small interfering RNA, and coexpression of constitutively active Akt demonstrated an essential role for surface Grp78 in T-cad-dependent survival signal transduction via Akt in endothelial cells. The findings herein are relevant in the context of both the identification of transmembrane signaling partners for GPI-anchored T-cad as well as the demonstration of a novel mechanism whereby Grp78 can influence endothelial cell survival as a cell surface signaling receptor rather than an intracellular chaperone.


PLoS Biology ◽  
2013 ◽  
Vol 11 (3) ◽  
pp. e1001515 ◽  
Author(s):  
Daniel Thomas ◽  
Jason A. Powell ◽  
Benjamin D. Green ◽  
Emma F. Barry ◽  
Yuefang Ma ◽  
...  

2016 ◽  
Vol 46 ◽  
pp. 169-179 ◽  
Author(s):  
Sara Sarroca ◽  
Patricia Molina-Martínez ◽  
Cristina Aresté ◽  
Martin Etzrodt ◽  
Pablo García de Frutos ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1885
Author(s):  
Claudio Molinari ◽  
Sara Ruga ◽  
Mahitab Farghali ◽  
Rebecca Galla ◽  
Rosario Fernández Godino ◽  
...  

Background: Glaucoma is currently the leading cause of irreversible blindness; it is a neuropathy characterized by structural alterations of the optic nerve, leading to visual impairments. The aim of this work is to develop a new oral formulation able to counteract the early changes connected to glaucomatous degeneration. The composition is based on gastrodin and vitamin D3 combined with vitamin C, blackcurrant, and lycopene. Methods: Cells and tissues of the retina were used to study biological mechanisms involved in glaucoma, to slow down the progression of the disease. Experiments mimicking the conditions of glaucoma were carried out to examine the etiology of retinal degeneration. Results: Our results show a significant ability to restore glaucoma-induced damage, by counteracting ROS production and promoting cell survival by inhibiting apoptosis. These effects were confirmed by the intracellular mechanism that was activated following administration of the compound, either before or after the glaucoma induction. In particular, the main results were obtained as a preventive action of glaucoma, showing a beneficial action on all selected markers, both on cells and on eyecup preparations. It is therefore possible to hypothesize both the preventive and therapeutic use of this formulation, in the presence of risk factors, and due to its ability to inhibit the apoptotic cycle and to stimulate cell survival mechanisms, respectively. Conclusion: This formulation has exhibited an active role in the prevention or restoration of glaucoma damage for the first time.


Sign in / Sign up

Export Citation Format

Share Document